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Abstract

Simple weighted averaging of word vectors often yields ef-
fective representations for sentences which outperform so-
phisticated seq2seq neural models in many tasks. While it
is desirable to use the same method to represent documents
as well, unfortunately, the effectiveness is lost when repre-
senting long documents involving multiple sentences. One of
the key reasons is that a longer document is likely to contain
words from many different topics; hence, creating a single
vector while ignoring all the topical structure is unlikely to
yield an effective document representation. This problem is
less acute in single sentences and other short text fragments
where the presence of a single topic is most likely. To allevi-
ate this problem, we present P-SIF, a partitioned word aver-
aging model to represent long documents. P-SIF retains the
simplicity of simple weighted word averaging while taking
a document’s topical structure into account. In particular, P-
SIF learns topic-specific vectors from a document and finally
concatenates them all to represent the overall document. We
provide theoretical justifications on the correctness of P-SIF.
Through a comprehensive set of experiments, we demonstrate
P-SIF’s effectiveness compared to simple weighted averag-
ing and many other baselines.

Introduction
Many approaches such as (Socher et al. 2013; Liu, Qiu, and
Huang 2015; Le and Mikolov 2014; Ling et al. 2015) are
proposed which go beyond words to capture the semantic
meaning of sentences. These techniques either use the sim-
ple composition of the word-vectors or sophisticated neural
network architectures for sentence representation. Recently,
(Arora, Liang, and Ma 2017) proposed a smooth inverse fre-
quency (SIF) based word vector averaging model to embed
a sentence. They further improved their embedding by re-
moving the first principal component of the weighted av-
erage vectors. However, all these approaches are limited to
capturing the meaning of a single sentence and represent-
ing the sentence in the same space as words, thus reduc-
ing their expressive power. Generally, longer texts contain
words from multiple topics, so creating a single vector from
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simple averaging of word-vectors will disregard all the topi-
cal structure. 1 Hence, these techniques are largely unable to
capture the semantic meanings of larger pieces of text, e.g.,
multi-sentence documents.

To address these limitations, we present a novel document
embedding method called partition SIF weighted averaging
(P-SIF) to embed documents which usually contain multi-
ple sentences efficiently. P-SIF learns topic-specific vectors
from a document and finally concatenates them all to repre-
sent the overall document. Thus, P-SIF retains the simplic-
ity of simple weighted word averaging while taking a docu-
ment’s topical structure into account. We also provide theo-
retical justifications for the proposed approach and demon-
strate its efficacy via a comprehensive set of experiments.
P-SIF achieves significant improvements over several em-
bedding techniques on several tasks despite being simple.
We have released the source code for P-SIF embeddings. 2

The novel characteristics of P-SIF are described below:

• P-SIF can embed larger multi-sentence documents, as it
pays attention to the topical structure of the document.

• P-SIF is based on simple weighted word vectors aver-
aging rather than considerably more sophisticated tensor
factorization or neural network-based methods.

• P-SIF is unsupervised since it only uses pre-trained word
embeddings without using any label information.

• P-SIF outperforms many existing methods on text simi-
larity, text classification, and other supervised tasks.

Related Work
Most of the prior work has computed sentence embeddings
by coordinate wise vector and matrix-based compositional
operations over word vectors, e.g., (Levy and Goldberg
2014) use unweighted averaging of word vectors (Le and
Mikolov 2014) for representing short phrases, (Singh and
Mukerjee 2015) propose tfidf-weighted averaging of word
vectors to form document vectors, (Socher et al. 2013) pro-
pose a recursive neural network defined over a parse tree,
and train with supervision.

1Topical structure denotes word distribution across topics.
2https://github.com/vgupta123/P-SIF



Next, (Le and Mikolov 2014) propose PV-DM and PV-
DBOW models which treat each sentence as a shared global
latent vector. Other approaches use seq2seq models such as
Recurrent Neural Networks (Mikolov et al. 2010) and Long
Short Term Memory (Gers, Schraudolph, and Schmidhuber
2002) which can handle long term dependency, hence cap-
turing the syntax structure. Other neural network models in-
clude the use of hierarchy and convolutional neural networks
such as (Kim 2014). (Wieting et al. 2015) learns paraphras-
tic sentence embeddings by modifying word embeddings via
supervision from the Paraphrase pairs dataset (PPDB) (Gan-
itkevitch, Van Durme, and Callison-Burch 2013).

Recently, a lot of work is harnessing topic modeling (Blei
et al. 2003) along with word vectors to learn better word and
sentence representations, e.g., LDA (Chen and Liu 2014),
weight-BoC (Kim, Kim, and Cho 2017), TWE (Liu et al.
2015) , NTSG (Liu, Qiu, and Huang 2015), WTM (Fu et al.
2016), w2v-LDA (Nguyen et al. 2015), TV+MeanWV (Li
et al. 2016a), LTSG (Law et al. 2017), Gaussian-LDA (Das,
Zaheer, and Dyer 2015), Topic2Vec (Niu et al. 2015), TM
(Dieng, Ruiz, and Blei 2019b), LDA2vec (Moody 2016),
D-ETM (Dieng, Ruiz, and Blei 2019a) and MvTM (Li et
al. 2016b). (Kiros et al. 2015) propose skip-thought docu-
ment embedding vectors which transformed the idea of ab-
stracting the distributional hypothesis from word to sentence
level. (Wieting et al. 2016) propose a neural network model
which optimizes the word embeddings based on the cosine
similarity of the sentence embeddings. Moreover, several re-
cent deep contextual word embeddings such as ELMo (Pe-
ters et al. 2018), USE (Cer et al. 2018) and BERT (Devlin
et al. 2019) are proposed. These contextual embeddings are
state-of-the-art on multiple tasks as they effectively capture
the surrounding contexts.

(Gupta et al. 2016) propose methods which employ a
clustering-based technique and tf-idf values to form a com-
posite document vector extending the Bag-of-Words (BoW)
model (Harris 1954). They represent documents in higher
dimensions by using hard clustering over word embeddings.
(Mekala et al. 2017) extend this by proposing SCDV using
an overlapping clustering technique and direct idf weighting
of word vectors. The learned representations try to capture
a global context of a sentence, similar to an n-gram model.
Our method is the same in essence, but is based on topic-
based partitioning; moreover, unlike (Mekala et al. 2017)’s
approach, our method is supported by theoretical guarantees.

Averaging vs Partition Averaging
Figure 1, represents the word-vector space, where similar
meaning words occur closer to each other. We can apply
sparse coding to partition the word-vector space to a five
topic vector space. These five topic vector spaces represent
the five topics present in corpus. Some words are multi-
sense and belong to multiple topics with some proportion.
In Figure 1 we represent words’ topic number in subscript
and proportion in brackets. Let’s consider a document dn:
“Data journalists deliver data science news to general pub-
lic. They often take part in interpreting the data models. In
addition, they create graphical designs and interview the di-
rectors and CEOs.”

If we directly average words to represent document (~vdn ),
as is done in SIF (Arora, Liang, and Ma 2017), then differ-
ent semantic meaning words, e.g., words in partition 1 such
as ‘graphical’, ‘design’, and ‘data’ are averaged with words
of different semantic meaning of partition 2 such as ‘data
science’, ‘model’, and ‘data’. In addition, the document is
represented in the same d dimensional space as word vec-
tors. Overall, averaging represents the documents as a single
point in the vector space and does not consider the 5 dif-
ferent semantic topics. However, we can weight (topic pro-
portion) average of words within a partition and concate-
nate (⊕) the average word vectors across partitions to rep-
resent document (~vdn

), as is done in our proposed method
P-SIF. By doing this, words belonging to different seman-
tic topics are separated by concatenation (⊕) as they rep-
resent separate meanings, whereas words in similar topics
are simply averaged since they represent the same mean-
ing. For example, average of words belonging to partition
1 such as ‘graphical’, ‘design’, and ‘data’ are concatenated
to average of words in partition 2 such as ‘data science’,
‘model’, and ‘data’. The final document vector ~vdn is repre-
sented in a higher 5 × d dimension vector space, thus hav-
ing more representational power (d is the dimension of word
vectors). Overall, the 5 different semantic topics are taken
into account for representation. Additionally, this represen-
tation also takes the weight according to which each word
belongs to various topics into account, meaning it handles
words’ multi-sense natures. For example, ‘data’ belongs to
partition 1 with probability 0.3 and partition 2 with proba-
bility 0.7. Hence, partitioned averaging with topic weighting
is essential for representing longer text documents.

Figure 1: Words in different partitions are represented by dif-
ferent subscripts and separated by hyper-planes. Bold fonts
represent words’ presence in document dn.

The Proposed Algorithm: P-SIF
In this section, we present the new proposed document em-
bedding learning method in algorithm 1. The feature forma-
tion algorithm can be divided into three major steps:



Sparse Dictionary Learning for Word Vectors (Algo
1: Lines 1 - 3): Given word vectors vw ∈ Rd, a spar-
sity parameter k, and an upper bound K , we find a set
of unit norm vectors ~A1, ~A2, . . . , ~AK , such that ~vw =∑K

j=1 α(w,j)
~Aj + ~ηw where at most k out of K of the co-

efficients α(w,1), . . . , α(w,K) are nonzero (so-called spar-
sity constraint), and ~ηw is a noise vector. Sparse coding is
usually solved for a given K and k by using alternating
minimization such as k-svd (Aharon et al. 2006) to find
the ~A′is that minimize the following L2-reconstruction er-
ror: ‖~vw −

∑K
j=1 α(w,j)

~Aj‖. (Arora et al. 2016b) show that
multiple senses of a word reside as a linear superposition
within the word embedding and can be recovered by simple
sparse coding. Therefore, one can use the sparse coding of
word vectors to detect multiple senses of words. Addition-
ally, the atoms of sparse coding ( ~A1, . . . , ~AK) over word-
vectors (~vw) represent all prominent topics in the corpus.
For a given word w, the k non-zero coefficient of αw essen-
tially represents the distribution of words over topics. Fur-
thermore, restricting K to be much smaller than the number
of the words ensures that the same topic needs to be used
for multiple words. The learned ~Aj is a significant topic be-
cause the sparse coding ensures that each basis element is
softly chosen by many words.

Sparse Dictionary Learning vs. Overlapping Clustering:
Sparse coding can also be treated as a linear algebraic ana-
logue of overlapping clustering, where the ~Ai’s act as clus-
ter centers and each ~vw is assigned to each cluster in a soft
way (using the coefficients α(w,j), of which only k out of
K are non-zero) to a linear combination of at most k clus-
ters. In practice, sparse coding optimization produces coef-
ficients α(w,j) which are almost all positive, even though
unconstrained. One can use overlapping clustering where
each word belongs to every cluster with some probability
P (ck|wi) which can be thought of as a substitute for α(w,k),
similar to the approach in SCDV (Mekala et al. 2017). In-
stead of GMM, we use a dictionary learning-based approach
which imposes a sparsity constraint implicitly during opti-
mization through regularization. Additionally, such high di-
mensional data structure regularizers, e.g., sparse encodings,
help in overcoming the curse of high dimensionality. For
single-sentence documents with a small number of topics,
it is better to use overlapping clustering because of an eas-
ier unconstrained optimization. However, in case of multi-
sentence documents where the number of topics is large,
dictionary learning performs better than overlapping clus-
tering due to 1) Sparse constraint optimization forces non-
redundant clusters (minimally sufficient #clusters) and 2)
The sparse constraint diminishes the noise from the long tail
of word-cluster assignments P (ck|wi) (Olshausen and Field
1997; Yang et al. 2009).

Word Topics Vector Formation (Algo 1: Lines 4 - 9):
For single sentence documents all words of a document be-
long to a single topic. However, for multi-sentence docu-
ments, words of a document generally originate from multi-
ple topics. To capture this, topic modeling algorithms such
as LDA (Blei et al. 2003) are used to represent the docu-
ments. These representations essentially represent the global

contexts of the documents as a distribution over topics. How-
ever, these representations do not take the local context ini-
tiating from the distributional semantics such as word vec-
tors into account. Since our multi-sentence documents have
words from multiple topics, a simple averaging technique
will not work. Hence, we concatenate the word embeddings
over words’ topic distributions. This helps to represent se-
mantically similar words in the same topic, while words
which are semantically different are represented in differ-
ent topics. Concatenation of word embeddings over topics
also helps in the expression of words’ multi-sense nature.
For each word ~w, we create K different word-cluster vec-
tors of d dimensions ~cvwk by weighting the word embed-
ding with its learned dictionary coefficient αw,k of the kth

context. 3 We then concatenate all the K word-cluster vec-
tors ~cvwk into a K × d dimensional embedding to form a
word-topic vector ~tvw ∈ RK×d. We weigh word-vectors by
coefficients of the learned dictionary to capture the cross cor-
relation (αiαj) between topics. The word-topic-vector ~tvw,
which we average to represent documents, captures both lo-
cal and global semantics.

SIF Weight Averaging and Common Component Re-
moval (Algo 1: Lines 10 - 16): Finally, for all words ap-
pearing in document Dn, we weight the word-topics vectors
~tvi by smooth inverse frequency

(
a

a+p(w)

)
. Next, we remove

the common contexts from the weighted average document
vectors by removing the first principal component from the
weighted average vectors. 4 Common component removal
reduces the noise and redundancy from the document vec-
tors which makes the representations more discriminating.
(Arora, Liang, and Ma 2017) empirically show SIF weight-
ing outperforms the tf-idf weighting. However, they use sim-
ple averaging to represent a sentence. Detailed code archi-
tecture of P-SIF is in the supplementary material. 5

Derivation of P-SIF Embeddings : We provide theo-
retical justifications by showing connections of P-SIF with
random-walk based latent variable models (Arora, Liang,
and Ma 2017; Arora et al. 2016a; 2016b). Full derivations
are provided in the supplementary material.

Kernels meet Embeddings
In this section, we present one of the novelties of this work
where we show that many common sentence embeddings
can be represented as similarity kernels over word and topic
vectors. Let DA and DB represent two documents con-
taining n and m words respectively. wA

1 , w
A
2 . . . w

A
n denote

DA’s words and wB
1 , w

B
2 . . . w

B
m denoteDB’s words. Below

we describe the similarity kernels over word/topic vectors:

1. Simple Word Vector Averaging (Singh and Mukerjee
2015) : K1(DA, DB) =

1
nm

∑n
i=1

∑m
j=1〈~vwA

i
· ~vwB

j
〉

3Empirically, we observed that this weighting generally improves
the performance.

4We did not remove the common component from final vectors
when we used Doc2VecC-initialized (Chen 2017) word vectors
with P-SIF. Because frequent words’ word-vectors become close
to ~0.

5https://vgupta123.github.io/docs/aaai2020appendix.pdf



Algorithm 1: P-SIF Embedding
Data: d dimensional Word embeddings

{~vw : w ∈ V } where word w is in vocabulary
V . Documents {dn : dn ∈ D}, a set of
sentences D in corpus C, parameter a and
estimated unigram probability
{p(w) : w ∈ V } of word w in C, a sparsity
parameter k, and an upper bound K.

Result: Document vectors {~vdn
: dn ∈ D}

/* Dictionary learning on
word-vectors */

1 for each word w in V do
2 ~vw =

∑K
j=1 αw,j

~Aj + ~ηw;
3 end
/* Word topic-vector formation */

4 for each word w in V do
5 for each coefficient, αw,k of word w do
6 ~cvw,k ← ~vw × αw,k;
7 end
8 ~tvw ←

⊕K
k=1 ~cvwk ;

/*
⊕

is concatenation, × is
scalar vector multiplication
*/

9 end
/* SIF reweighed embedding */

10 for each document dn in D do
11 ~vdn

← 1
|dn|

∑
w∈dn

a
a+p(w)

~tvw;
12 end
13 Form a matrix X whose columns are
{~vdn : dn ∈ D}, and let ~u be the first singular
vector;

14 for each document dn ∈ D do
15 ~vdn

← ~vdn
- ~u~uT~vdn

;
16 end

2. TWE: Topical Word Embeddings (Liu et al. 2015) :
K2(DA, DB) =

1
nm

∑n
i=1

∑m
j=1〈~vwA

i
·~vwB

j
〉+ 〈~tvwA

i
·~twB

j
〉

3. P-SIF: Partition Word Vector Averaging (Our approach)
: K3(DA, DB) =

1
nm

∑n
i=1

∑m
j=1〈~vwA

i
·~vwB

j
〉× 〈~twA

i
·~twB

j
〉

4. Relaxed Word Mover Distance (Kusner et al. 2015) :
K4(DA, DB) =

1
n

∑n
i=1 maxj〈~vwA

i
· ~vwB

j
〉

Here, ~vw represents the word vector of wordw and~tw = αw

∈ RK represents the topic vector of word w, where K is the
number of topics. 〈~a · ~b〉 represents the dot product of two
vectors ~a and~b. c× d represents the scalar product of c and
d.
⊕

represents the row-wise concatenation of the vectors.
Refer to the Supplementary material for the detailed proof.

Experimental Results
We perform a comprehensive set of experiments on several
text similarity and multiclass or multilabel text classification
tasks. Due to limited space, some details on experiments are
in the Supplementary material.

Textual Similarity Task
Datasets and Baselines: We perform our experiments on
the SemEval dataset (2012 - 2017). These experiments in-
volve 27 semantic textual similarity (STS) tasks (2012 -
2016) (Agirre et al. 2012; 2016), the SemEval 2015 Twit-
ter task (Xu, Callison-Burch, and Dolan 2015), and the Se-
mEval 2014 Semantic relatedness task (Marelli et al. 2014).
The objectives of these tasks are to predict the similarity be-
tween two sentences. We compare our approach with several
unsupervised, semi-supervised and supervised embedding
baselines mostly taken from (Arora, Liang, and Ma 2017;
Wu et al. 2018; Ethayarajh 2018). Details on the baselines
are listed below:

Unsupervised: We use ST, avg-GloVe, tfidf-GloVe, and
GloVe + WR as baselines. ST denotes the skip-thought
vectors by (Kiros et al. 2015), avg-GloVe denotes the un-
weighted average of the GloVe Vectors by (Pennington,
Socher, and Manning 2014), 6 and tfidf-Glove denotes the
tf-idf weighted average of GloVe vectors. We also compare
our method with the SIF weighting (W ) common compo-
nent removal (R) GloVe vectors (GloVe + WR) by (Arora,
Liang, and Ma 2017). For STS 16, we also compare our em-
beddings with Skip-Thoughts (Kiros et al. 2015), BERT pre-
trained embedding average (Devlin et al. 2019) , Universal
Sentence Encoder (Cer et al. 2018) and Sent2Vec (Pagliar-
dini, Gupta, and Jaggi 2018) embeddings.

Semi-Supervised: We use avg-PSL, PSL + WR, and the
avg-PSL used the unweighted average of the PARAGRAM-
SL999 (PSL) word vectors by (Wieting et al. 2015) as a
baseline, obtained by training on PPDB dataset (Ganitke-
vitch, Van Durme, and Callison-Burch 2013). The word vec-
tors are trained using unlabeled data. Furthermore, sentence
embeddings are obtained from unweighted word vectors av-
eraging. We also compare our method with the SIF weight-
ing (W) common component removal (R) PSL word vectors
(PSL + WR) by (Arora, Liang, and Ma 2017).

Supervised: We compare our method with PP, PP-proj.,
DAN, RNN, iRNN, LSTM (o.g), LSTM (no) and GRAN.
All these methods are initialized with PSL word vectors and
then trained on the PPDB dataset (Ganitkevitch, Van Durme,
and Callison-Burch 2013). PP (Wieting et al. 2016) is the av-
erage of word vectors, while PP-proj is the average of word
vectors followed by a linear projection. The word vectors
are updated during the training. DAN denotes the deep aver-
aging network (Iyyer et al. 2015). RNN is a Recurrent neu-
ral network, iRNN is the identity activated Recurrent Neural
Network based on identity-initialized weight matrices. The
LSTM is the version from (Gers, Schraudolph, and Schmid-
huber 2002), either with output gates (denoted as LSTM
(o.g.)) or without (denoted as LSTM (no)). GRAN denotes
state-of-the-art supervised averaging based Gated Recurrent
Averaging Network from (Wieting and Gimpel 2017). For
STS 16 we also compare our embedding with Tree-LSTM
(Tai, Socher, and Manning 2015) embeddings.

Experimental Settings: We use the Pearson’s coefficient
between the predicted and the ground-truth scores for the

6We used the 300-dimensional word vectors that are publicly avail-
able at http://nlp.stanford.edu/projects/glove/.



evaluation. We use the PARAGRAM-SL999 (PSL) as word
embeddings, obtained by training on the PPDB dataset. 7

We use the fixed weighting parameter a value of 10−3, and
the word frequencies p(w) are estimated from the common-
crawl dataset. We tune the number of contexts (K) to min-
imize the reconstruction loss over the word-vectors. We fix
the non-zero coefficient k = K/2, for the SIF experiments.
For the GMM-based partitioning of the vocabulary, we tune
the number of clusters’ parameter K through a 5-fold cross
validation.

Results and Analysis: The average results for each year
are reported in Tables 1 and 2. We denote our embeddings by
P-SIF + PSL (+ PSL denotes using the PSL word vectors).
We report the average results for the STS tasks. The detailed
results on each sub-dataset are in the Supplementary mate-
rial. We observe that P-SIF + PSL outperforms PSL + WR
on all datasets, thus supporting the usefulness of our par-
titioned averaging. Despite being simple, our method out-
performs many complicated methods such as seq2seq, Tree-
LSTM (Tai, Socher, and Manning 2015), and Skip-Thoughts
(Kiros et al. 2015). We observe that partitioning through
overlapping clustering algorithms such as GMM generates a
better performance compared to partitioning through sparse
dictionary algorithms such as k-svd for some Semantic Tex-
tual Similarity (STS) task datasets. The main reason for this
peculiar observation is related to the fact that some STS
datasets contain documents which are single sentences of a
maximum length of 40 words. As discussed earlier (sparse
dictionary learning vs. overlapping clustering), for single
sentence documents with a small number of topics, over-
lapping clustering optimizes better than sparse dictionary
learning. Therefore, we use GMM for partitioning words
into suitable clusters for some STS tasks. But both k-svd
and GMM outperform simple averaging (SIF) by significant
margins on most STS tasks. 8 We report qualitative results
with real examples in the Supplementary material.

Text Classification Task
The document embeddings obtained by our method can be
used as direct features for many classification tasks.

Datasets and Baselines: We run multi-class experi-
ments on 20NewsGroup dataset, and multi-label classifica-
tion experiments on Reuters-21578 dataset. We use script
for preprocessing the dataset. 9 We consider several em-
bedding baselines mostly taken from (Mekala et al. 2017;
Wu et al. 2018; Arora et al. 2016b). We consider the fol-
lowing baselines: The Bag-of-Words (BoW) model (Har-
ris 1954), the Bag of Word Vector (BoWV) (Gupta et al.
2016) model, Sparse Composite Document Vector (SCDV)
(Mekala et al. 2017), paragraph vector models (PVDM,
PV-DBoW) (Le and Mikolov 2014), Topical word embed-
dings (TWE-1) (Liu et al. 2015), Neural Tensor Skip-Gram
Model (NTSG-1 to NTSG-3) (Liu, Qiu, and Huang 2015),

7For a fair comparison with SIF we use PSL vectors instead of un-
supervised GloVe and Word2Vec vectors.

8k-svd always outperforms GMM on both datasets since the docu-
ments are multi-sentence with #words >> 40.

9https://gist.github.com/herrfz/7967781

tf-idf weighted average word-vector model (Singh and Muk-
erjee 2015) and weighted Bag of Concepts (weight-BoC)
(Kim, Kim, and Cho 2017) where we build document-topic
vectors by counting the member words in each topic, and
Doc2VecC (Chen 2017) where averaging and training of
word vectors are done jointly. Moreover, we use SIF (Arora,
Liang, and Ma 2017) smooth inverse frequency weight with
common component removal from weighted average vec-
tors as a baseline. We also compare our results with other
topic modeling based document embedding methods such
as WTM (Fu et al. 2016), w2v-LDA (Nguyen et al. 2015),
LDA (Chen and Liu 2014), TV+MeanWV (Li et al. 2016a)),
LTSG (Law et al. 2017), Gaussian-LDA (Das, Zaheer, and
Dyer 2015), Topic2Vec (Niu et al. 2015), Lda2Vec (Moody
2016), MvTM (Li et al. 2016b) and BERT (Devlin et al.
2019). For BERT, we report the results on the unsupervised
pre-trained (pr) model because of a fair comparison to P-
SIF which is also unsupervised.

Experimental Settings: We fix the document embed-
dings and only learn the classifier. We learn word vector em-
beddings using Skip-Gram with a window size of 10, Nega-
tive Sampling (SGNS) of 10, and minimum word frequency
of 20. We use 5-fold cross-validation on the F1 score to tune
hyperparameters. We use LinearSVM for multi-class classi-
fication and Logistic regression with the OneVsRest setting
for multi-label classification. We fix the number of dictio-
nary elements to either 40 or 20 (with Doc2vecC initialize
word vectors) and non-zero coefficient to k = K/2 during
dictionary learning for all experiments. We use the best pa-
rameter settings, as reported in all our baselines to gener-
ate their results. We use 200 dimensions for tf-idf weighted
word-vector model, 400 for paragraph vector model, 80 top-
ics and 400 dimensional vectors for TWE, NTSG, LTSG
and 60 topics and 200 dimensional word vectors for SCDV
(Mekala et al. 2017). We evaluate the classifiers’ perfor-
mance using standard metrics such as accuracy, macro-
averaging precision, recall and F-score for multiclass clas-
sification tasks. We evaluate multi-label classifications’ per-
formance using Precision@K, nDCG@k, Coverage error,
Label ranking average precision (LRAPS) and F1 score. 10

Results and Analysis: We observe that P-SIF outper-
forms all other methods by a significant margin on both
20NewsGroup (Table 4) and Reuters (Table 5). We observe
that the dictionary learns more diverse and non-redundant
topics compared to overlapping clustering (SCDV) since we
require only 40 partitions rather than 60 partitions in SCDV
to obtain the best performance. Simple tf-idf weighted
averaging-based document representations do not show sig-
nificant improvement in performance by increasing word
vector dimensions. We achieve a < 0.4% improvement
in the accuracy when the word-vector dimensions increase
from 200 to 500 on 20NewsGroup. We observe that in-
creasing the word-vectors’ dimensions beyond 500 does not
improve SIF and P-SIF’s performances. We further im-
prove the performance on both datasets using Doc2vecC-
initialized (Chen 2017) word-vectors which reduce word
level noise in the P-SIF representations. We represent this

10https://goo.gl/4GrR3M



Table 1: Experimental results (Pearson’s r × 100) on textual similarity tasks. Many results are collected from (Wieting et al.
2016), DAN (Iyyer et al. 2015) and (Wieting and Gimpel 2017) (GRAN) except for tfidf-GloVe.

Tasks PP PP DAN RNN iRNN LSTM LSTM GRAN ST Avg tfidf Avg Glove PSL PSIF
proj (no) (o.g.) Glove Glove PSL +WR +WR +PSL

STS’12 58.7 60.0 56.0 48.1 58.4 51.0 46.4 62.5 30.8 52.5 58.7 52.8 56.2 59.5 65.7
STS’13 55.8 56.8 54.2 44.7 56.7 45.2 41.5 63.4 24.8 42.3 52.1 46.4 56.6 61.8 64.0
STS’14 70.9 71.3 69.5 57.7 70.9 59.8 51.5 75.9 31.4 54.2 63.8 59.5 68.5 73.5 74.8
STS’15 75.8 74.8 72.7 57.2 75.6 63.9 56.0 77.7 31.0 52.7 60.6 60.0 71.7 76.3 77.3
Sick’14 71.6 71.6 70.7 61.2 71.2 63.9 59.0 72.9 49.8 65.9 69.4 66.4 72.2 72.9 73.4
Twit15 52.9 52.8 53.7 45.1 52.9 47.6 36.1 50.2 24.7 30.3 33.8 36.3 48.0 49.0 54.9

Table 2: P-SIF comparison with the recent embedding techniques on various STS tasks. Baselines taken from (Conneau and
Kiela 2018), (Perone, Silveira, and Paula 2018), (Cer et al. 2018), (Devlin et al. 2019), (Wu et al. 2018) and (Ethayarajh 2018).

Task ELMo ELMo Bert(pr) USE p-mean Fast Skip Infer Char WME PSIF u-SIF
orig+all orig+top Avg. Text Thoughts Sent pharse +PSL +PSL +PSL

STS 12 55 54 53 65 54 58 41 61 66 62.8 65.7 65.8
STS 13 51 49 67 68 52 58 29 56 57 56.3 63.98 65.2
STS 14 63 62 62 64 63 65 40 68 74.7 68.0 74.8 75.9
STS 15 69 67 73 77 66 68 46 71 76.1 64.2 77.3 77.6
STS 16 64 63 67 73 67 64 52 77 - - 73.7 72.3
Average 60.4 59 64.4 69.4 60.4 62.6 41.6 66.6 68.5 62.9 71.1 71.4

Table 3: Comparison of P-SIF (SGNS) with the recently proposed word mover distance and word mover embedding (Wu et al.
2018) based on accuracy. In ±x, x is the variance across several runs.

Dataset Bbcsport Twitter Ohsumed Classic Reuters Amazon 20NG Recipe-L
SIF(GloVe) 97.3 ± 1.2 57.8 ± 2.5 67.1 92.7 ± 0.9 87.6 94.1 ± 0.2 72.3 71.1 ± 0.5

Word2Vec Avg 97.3 ± 0.9 72.0 ± 1.5 63 95.2 ± 0.4 96.9 94.0 ± 0.5 71.7 74.9 ± 0.5
PV-DBOW 97.2 ± 0.7 67.8 ± 0.4 55.9 97.0 ± 0.3 96.3 89.2 ± 0.3 71 73.1 ± 0.5

PV-DM 97.9 ± 1.3 67.3 ± 0.3 59.8 96.5 ± 0.7 94.9 88.6 ± 0.4 74 71.1 ± 0.4
Doc2VecC 90.5 ± 1.7 71.0 ± 0.4 63.4 96.6 ± 0.4 96.5 91.2 ± 0.5 78.2 76.1 ± 0.4

KNN-WMD 95.4 ± 1.2 71.3 ± 0.6 55.5 97.2 ± 0.1 96.5 92.6 ± 0.3 73.2 71.4 ± 0.5
SCDV 98.1 ± 0.6 74.2 ± 0.4 53.5 96.9 ± 0.1 97.3 93.9 ± 0.4 78.8 78.5± 0.5
WME 98.2 ± 0.6 74.5 ± 0.5 64.5 97.1 ± 0.4 97.2 94.3 ± 0.4 78.3 79.2 ± 0.3
P-SIF 99.05 ± 0.9 73.39 ± 0.9 67.1 96.95 ± 0.5 97.67 94.17 ± 0.3 79.15 78.24 ± 0.3

P-SIF (Doc2VecC) 99.68 ± 0.9 72.39 ± 0.9 67.1 97.7 ± 0.5 97.62 94.83 ± 0.3 86.31 77.61 ± 0.3

approach by P-SIF (Doc2VecC) in Table 4 and Table 5.
On 20NewsGroup, we require only 20 partitions instead of
40 with Doc2VecC-initialized word vectors. This shows that
better word vector representations help in learning more di-
verse and non-redundant partitions. We also report our re-
sults (micro-F1) on each of the 20 classes of 20NewsGroup
in the Supplementary material. Additionally, we empirically
show that our proposed embedding P-SIF outperforms the
word mover distance (Kusner et al. 2015) and performs com-
parable with the word mover embedding (Wu et al. 2018) in
Table 3. For more details on datasets and baselines refer to
(Wu et al. 2018). Overall, P-SIF outperforms most methods
on several datasets by a significant margin.

Comparison with Contextual Embeddings: Despite its
simplicity, P-SIF is able to outperform unsupervised con-
textual embeddings such as BERT (pr) and ELMo. We as-
sume the reason behind this is P-SIF’s focused ability to ef-
fectively capture both global and local semantics in sparse
higher dimension representations. On other hand, BERT
tries to capture both syntax and semantics in single lower
dimensional continuous representations. In both classifica-
tion and similarity tasks in our setting, understanding syntax

is not as prominent as understanding semantics.

Analysis and Discussion
Effect of Document-Length:We conduct a small exper-
iment to show that our model performs better compared
to SIF for long documents. We divide 26 STS datasets
by average document length, i.e., the number of words
in documents in bins of (10 − 20, 20 − 30, 30 − 40,
40 − 50) words. Next, we average the relative performance
improvement by P-SIF and SCDV by accuracy with respect
to SIF

(Method−SIF
SIF %

)
for datasets in each bin. In Fig. 2,

we observe that for complex multi-sentence documents
with more words, P-SIF performs relatively better than
SCDV. We also note that short texts require fewer number of
partitions to achieve their best performance which is quite
intuitive since short text documents map to fewer topics.

Effect of Sparse Partitioning: Partitioning and concate-
nation of word embeddings over topics also helps in the rep-
resentation of multi-sense words, which would have been
left-out by simple averaging of the word embeddings in
document representation otherwise. Empirically, on both



Table 4: Multi-class classification on 20NG
Model Acc Prec Rec Fmes

P-SIF (Doc2VecC) 86.0 86.1 86.1 86.0
P-SIF 85.4 85.5 85.4 85.2

BERT (pr) 84.9 84.9 85.0 85.0
SCDV 84.6 84.6 84.5 84.6

Doc2VecC 84.0 84.1 84.1 84.0
RandHash 83.9 83.99 83.9 83.76

BoE 83.1 83.1 83.1 83.1
NTSG 82.5 83.7 82.8 82.4

SIF 82.3 82.6 82.9 82.2
BoWV 81.6 81.1 81.1 80.9
LTSG 82.8 82.4 81.8 81.8

p-means 82.0 81.9 82.0 81.6
WTM 80.9 80.3 80.3 80.0

w2v-LDA 77.7 77.4 77.2 76.9
ELMo 74.1 74.0 74.1 73.9

TV+MeanWV 72.2 71.8 71.5 71.6
MvTM 72.2 71.8 71.5 71.6
TWE-1 81.5 81.2 80.6 80.6

Lda2Vec 81.3 81.4 80.4 80.5
LDA 72.2 70.8 70.7 70.0

weight-AvgVec 81.9 81.7 81.9 81.7
BoW 79.7 79.5 79.0 79.0

weight-BOC 71.8 71.3 71.8 71.4
PV-DBoW 75.4 74.9 74.3 74.3

PV-DM 72.4 72.1 71.5 71.5

Table 5: Multi-label classification on Reuters.
Model Prec Prec nDCG Cover. LRAPS F1

@1 @5 @5 Error Score
P-SIF 94.92 37.98 50.40 6.03 93.95 82.87

(Doc2VecC)
P-SIF 94.77 37.33 49.97 6.24 93.72 82.41

BERT (pr) 93.8 37 49.6 6.3 93.1 81.9
SCDV 94.20 36.98 49.55 6.48 93.30 81.75

Doc2VecC 93.45 36.86 49.28 6.83 92.66 81.29
p-means 93.29 36.65 48.95 10.8 91.72 77.81
BoWV 92.90 36.14 48.55 8.16 91.46 79.16
TWE 90.91 35.49 47.54 8.16 91.46 79.16
SIF 90.40 35.09 47.32 8.98 88.10 76.78

PV-DM 87.54 33.24 44.21 13.2 86.21 70.24
PV-DBoW 88.78 34.51 46.42 11.3 87.43 73.68

AvgVec 89.09 34.73 46.48 9.67 87.28 71.91
tfidf AvgVec 89.33 35.04 46.83 9.42 87.90 71.97

datasets, we observe that the dictionary learns more diverse
and non-redundant topics compared to overlapping cluster-
ing because of sparsity constraints. We require only 20 par-
titions rather than 60 in SCDV to obtain the best perfor-
mance, meaning we just need (20 ∗ 300) dimensions of em-
beddings (mostly sparse) compared to (60∗300) dimensions
of embeddings (mostly non-sparse). Thus, we obtain a per-
formance gain (F1-Score) of 1.5% with less than 0.33 of the
size of the SCDV embeddings. Lastly, due to fewer dimen-
sions, the feature formation time is less in P-SIF.

Conclusions and Future Work
We propose a novel unsupervised document feature forma-
tion technique based on partitioned word vector averaging.

Figure 2: Relative performance improvement of P-SIF and
SCDV over SIF w.r.t the average document length.

Our embedding retains the simplicity of simple weighted
word averaging while taking documents’ topical structure
into account. Our simple and efficient approach achieves
significantly better performance on several textual similarity
and textual classification tasks, e.g., we outperform contex-
tual embeddings such as BERT (pr) and ELMo. One limita-
tion of our work is its ignorance of words’ order and syntax.
In the future, we plan to address this problem and model
partitioning, averaging, and learning as a joint process.
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