Distributional Semantics meets Multi Label Learning

Vivek Gupta^{^#}, Rahul Wadbude^{*}, Nagarajan Natarajan[#] Harish Karnick^{*}, Prateek Jain[#] and Piyush Rai^{*}

*School of Computing, University of Utah # Microsoft Research Lab, India *Indian Institute of Technology, Kanpur

Microsoft[®] Research

The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019

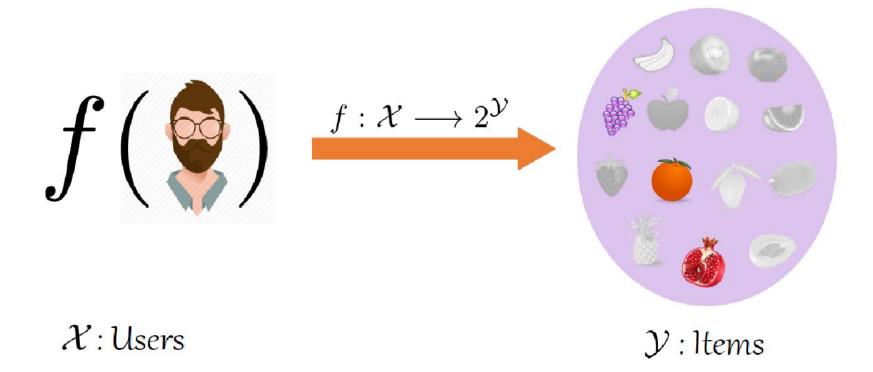
Outline

- Problem Statement
- Challenges
- Proposed Technique
- Experimental Results
- Conclusion
- Takeaway Points

Classification Paradigms

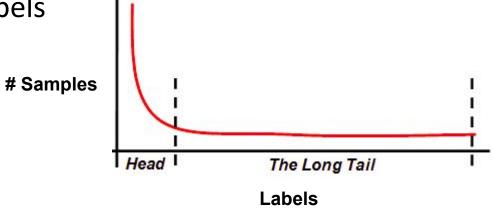
Extreme Multi-Label Learning

What all items would this user buy?



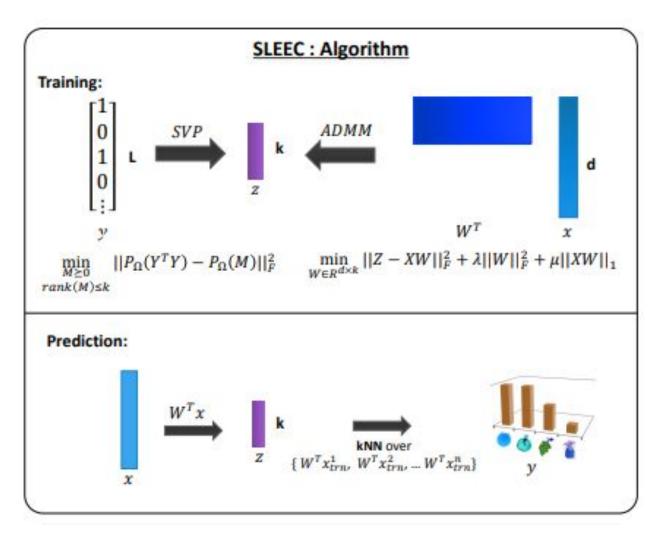
Challenges and Opportunity

- Large scale setting
 - N (#examples), L (#labels), D (#Feature Dim) in millions
 - Challenging due to long tail distribution of Labels
- Missing label in training and prediction set
 - Exploiting label correlation
 - Appropriate training and evaluation



SLEEC - Embedding Based Algorithm

Non linear neighborhood preserving low rank embedding of label vectors



• Inefficient in training time

Cannot perform end-to-end

joint learning

• Cannot handle missing label

SLEEC: Kush Bhatiya and Himanshu Jain. "Sparse Local Embeddings for Extreme Multi-label Classification", in NeurIPS, 2015.

Contribution

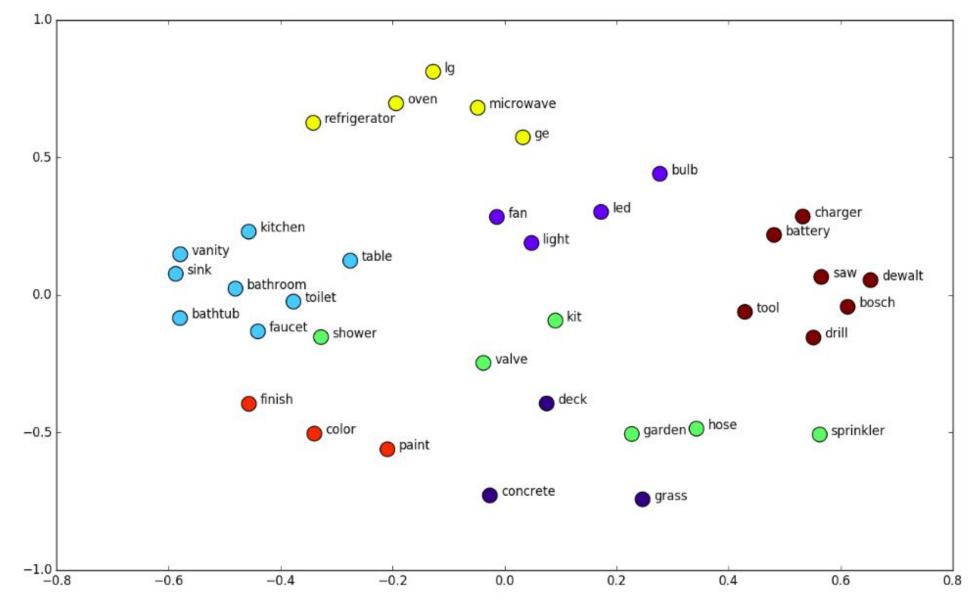
• Novel objective that leverages the word2vec embedding methods

• Optimized efficiently by matrix factorization, thus faster than SLEEC

• Can do joint learning of embedding-regression, more accurate than SLEEC

• Can easily incorporates side information, thus handling the missing labels

word2vec



Similar words are found in similar locations (src: <u>http://surivadeepan.github.io</u>)

SGNS meets Label Embedding

• word2vec embedding using Skip Gram Negative Sampling objective

$$P(\text{Observing } (w, w')) = \sigma(\langle \mathbf{z}_w, \mathbf{z}_{w'} \rangle) = \frac{1}{1 + \exp(\langle -\mathbf{z}_w, \mathbf{z}_{w'} \rangle)}$$

$$\max_{\mathbf{z}} \sum_{w} \left(\sum_{w':(w',w)} \log \left(\sigma(\langle \mathbf{z}_w, \mathbf{z}_{w'} \rangle) \right) + \frac{n_-}{\#w} \sum_{w''} \log \left(\sigma(-\langle \mathbf{z}_w, \mathbf{z}_{w''} \rangle) \right) \right)$$

• replacing words with the instance label vectors in the training sets

$$\max_{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n} \sum_{i=1}^n \left(\sum_{j: \mathcal{N}_k(\mathbf{y}_i)} \log \left(\sigma(\langle \mathbf{z}_i, \mathbf{z}_j \rangle) \right) + \frac{n_-}{n} \sum_{j'} \log \left(\sigma(-\langle \mathbf{z}_i, \mathbf{z}_{j'} \rangle) \right) \right)$$

SGNS as Matrix Factorization

Theorem

SGNSs objective is equivalent to weighted matrix factorization of shifted positive point wise mutual information (SPPMI) matrix [8]

Shifted PPMI:

$$PMI_{ij}(M) = log\left(\frac{M_{ij} * |M|}{\sum_k M_{(i,k)} * \sum_k M_{(k,j)}}\right)$$

$$SPPMI_{ij}(M) = \max(PMI_{ij}(M) - log(k), 0)$$

Here, PMI is point wise mutual information matrix of M and |M| represent sum of all element in M.

Proposed ExMLDS Algorithm

- Overall, multi-iteration SVP replaced with single step SVD
- Regression and prediction algorithm remain same as in *SLEEC*.
- We observe the *ExMLDS* training is 10x faster than *SLEEC*.

Incorporating Label-Label Correlation

- Learn the embeddings of labels as well as instances jointly.
- Overall Idea :
 - think of labels as individual words
 - think of instances with the active label as sentence
- Use extra label correlation information for label embedding
- Helps in handling the missing label problem efficiently

SLEEC Joint Learning

• Joint learning objective for the *SLEEC* algorithm

$$\min_{V \in \mathbb{R}^{\hat{L} \times d}} \|P_{\Omega}(Y^T Y) - P_{\Omega}(X^T V^T V X)\|_F^2 + \lambda \|V\|_F^2 + \mu \|V X\|_1.$$

• it's highly non-convex as well as non-differentiable

ExMLDS Jointly Learning

• With our proposed objective?

$$\mathbb{O}_i = \sum_{j:\mathcal{N}_k(\mathbf{y}_i)} \log\left(\sigma(K_{ij})\right) + \frac{n_-}{n} \sum_{j'} \log\left(\sigma(-K_{ij'})\right),$$

• Joint learning possible, although non-convex nature

$$\nabla_{V} \mathbb{O}_{i} = \sum_{j:\mathcal{N}_{k}(\mathbf{y}_{i})} \sigma(-K_{ij}) \nabla_{V} K_{ij} - \frac{n_{-}}{n} \sum_{j'} \sigma(K_{ij'}) \nabla_{V} K_{ij'}$$
$$\nabla_{V} K_{ij} = -ab^{3} c \mathbf{z}_{i}(\mathbf{x}_{i})^{T} - abc^{3} \mathbf{z}_{j}(\mathbf{x}_{j})^{T} + bc(\mathbf{z}_{i} \mathbf{x}_{j}^{T} + \mathbf{z}_{j} \mathbf{x}_{i}^{T})$$
$$a = \mathbf{z}_{i}^{T} \mathbf{z}_{j}, b = \frac{1}{\|\mathbf{z}_{i}\|}, c = \frac{1}{\|\mathbf{z}_{j}\|}$$

Efficient Training

Delicious-200K	elicious-200K	mill I	x Media	ıs Eurle	Deliciou	Bibtex	Method
1937	1937	0	9 120	580.	259	23	XMLDS1
13000 Training time	13000	00	4 1200	880.6	781.94	143.19	XMLDS2
10000	10000	2	891	4660	1351	313	SLEEC
			2			16 N	
	sed	edding Ba		Proposed		Pre	Dataset
LEML	LEML	SLEEC	DXML	xMLDS1	E		
		65.29	63.69	63.38	@1		
38.41	38.41	39.60	37.63	38.00	@3	P	Bibtex
28.21	28.21	28.63	27.71	27.64	@5	Р	
65.67	65.67	68.10	67.57	67.94	@1	P	
60.55	60.55	61.78	61.15	61.35	@3	P	Delicious
56.08	56.08	57.34	56.7	56.3	@5	P	
63.40	63.40	79.52	77.13	77.55	@1	P	
50.35	50.35	64.27	64.21	64.18	@3	P	Eurlex
41.28	41.28	52.32	52.31	52.51	@5	P	
	84.01	87.37	88.71	87.49	@1	P	
		72.6	71.65	72.62	@3		Mediamill
With almost equal performance		58.39	56.81	58.46	@5		
40.75		47.50	44.13	46.07	@1	Р	
		42.00	39.88	41.15	@3		Delicious-20
	35.84	39.20	37.20	38.57	@5	Р	
15							

Performance with Missing Labels

Dataset	Prec@k	ExMLDS3	SLEEC	Leml	Leml-Imc
Bibtex	P@1	48.51	30.5	35.98	41.23
	P@3	28.43	14.9	21.02	25.25
	P@5	20.7	9.81	15.50	18.56
	P@1	60.28	51.4	26.22	39.24
Eurlex	P@3	44.87	37.64	22.94	32.66
	P@5	35.31	29.62	19.02	26.54
rcv1v2	P@1	81.67	41.8	64.83	73.68
	P@3	52.82	17.48	42.56	48.56
	P@5	37.74	10.63	31.68	34.82

We hide randomly **80%** of the labels from training labels. We provide extra **YY'** (original) complete label-label correlation matrix along with masked **Y** to both *LEML-IMC* and *ExMLDS3*.

Performance with Joint Learning

			1	\square	
Dataset	Prec@k	Proposed	En bedding Based		
		EXMLDS4	ANNEXML	SLEEC	XML-CNN
AmazonCat-13K	P@1	93.05	93.55	90.53	95.06
	P@3	79.18	78.38	76.33	79.86
	P@5	64.54	63.32	61.52	63.91
Wiki10K-31K	P@1	86.82	86.50	85.88	84.06
	P@3	74.30	74.28	72.98	73.96
	P@5	63.68	64.19	62.70	64.11
	P@1	47.70	46.66	47.85	-
Delicious-200K	P@3	41.22	40.79	42.21	-
	P@5	37.98	37.64	^C 39.43	-
	P@1	62.15	63.36	54.83	-
WikiLSHTC-325K	P@3	39.58	40.66	33.42	-
	P@5	29.10	29.79	23.85	-
	P@1	62.27	63.86	58.39	59.85
Wikipedia-500K	P@3	41.43	42.69	37.88	39.28
	P@5	31.42	32.37	28.21	29.31
Amazon-670K	P@1	41.47	42.08	35.05	-
	P@3	36.35	36.65	31.25	-
	P@5	32.43	32.76	28.56	-
	×				

Conclusions

• Novel objective for XML that leverages the word2vec embedding method

- Optimized efficiently by matrix factorization, making it's faster than SLEEC
- Objective can jointly learn and obtain better results compared to SLEEC
- Easily incorporates side information, that is useful for handling missing labels

Takeaway Point

• Distributional Semantics algorithms can be efficiently utilize for XML task

• Joint learning of embedding and regression could be beneficial for XML task

Questions to Ponder?

- Can we jointly embed instance feature (x) and instance label (y) for XML task ?
- Better method for selection of negative samples while instance embedding ?

Paper id: #6621

I am active seeking for summer 2019 research internship opportunity. In case of available suitable position, please let me know:

> <u>keviv9@gmail.com</u> <u>https://vgupta123.github.io</u>

Acknowledgement

- Anonymous reviewers whose reviews help in improving the paper quality
- AAAI-19 Student Scholar and Volunteer Program for the needful support
- Prof. Vivek Srikumar and Prof. Ellen Riloff of School of Computing, University of Utah for presentation review at a short notice
- Microsoft Research Lab, Bangalore; School of Computing, University of Utah and Indian Institute of Technology, Kanpur for needed support and guidance

Main References

- ExMLDS : Rahul Wadbude and Vivek Gupta. "Leveraging Distributional Semantics for Multi Label Leaning". AAAI 2019
- Word2vec : Tomas Mikolov and Ilya Sutskever. "Distributed representations of words and phrases and their compositionality" In: NeurIPS 2013
- Doc2vec : Quoc V Le and Tomas Mikolov. "Distributed Representations of Sentences and Documents" In ICML 2014
- **SLEEC** : Kush Bhatiya and Himanshu Jain. *"Sparse Local Embeddings for Extreme Multi-label Classification"*, in *NeurIPS*, 2015.
- FastXML : Yashoteja Prabhu, and Manik Varma. "A Fast, Accurate and Stable Tree-classifier for eXtreme Multi-label Learning", in KDD, 2014
- **PfastreXML** : Himanshu Jian and Yashoteja Prabhu. "Extreme Multi-label Loss Functions for Recommendation, Tagging, Ranking & Other Missing Label Applications", in KDD, 2016.
- **PDSparse** : I. E. H. Yen and X. Huang. "*PD-Sparse: A Primal and Dual Sparse Approach to Extreme Multiclass and Multilabel Classification*" in *ICML*, 2016.
- **DiSMEC** : R. Babbar, and B. Schölkopf. "DiSMEC Distributed Sparse Machines for Extreme Multi-label Classification", in WSDM 2017.
- PPDSparse : I. E. H. Yen and X. Huang. "PPDSparse: A Parallel Primal-Dual Sparse Method for Extreme Classification" in KDD, 2017.
- AnnexML : Yukihiro Tagami. "Approximate Nearest Neighbor Search for Extreme Multi-label Classification", in KDD 2017
- Slice: H. Jain and V. Balasubramanian, "Scalable linear extreme classifiers trained on 100 million labels for related searches", in WSDM 2019
- Parabel: Y. Prabhu and A. Kag, "Partitioned label trees for extreme classification with application to dynamic search advertising", in WWW 2018
- SwiftML: Y. Prabhu and A. Kag, "Extreme multi-label learning with label features for warm-start tagging, ranking and recommendation", in WSDM 2018