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Classification Paradigms
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Extreme Multi-Label Learning
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Challenges and Opportunity

• Large scale setting

• N (#examples), L (#labels), D (#Feature Dim) in millions

• Challenging due to long tail distribution of Labels

• Missing label in training and prediction set

• Exploiting label correlation

• Appropriate training and evaluation
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SLEEC - Embedding Based Algorithm
Non linear neighborhood preserving low rank embedding of label vectors

6SLEEC : Kush Bhatiya and Himanshu Jain. “Sparse Local Embeddings for Extreme Multi-label Classification” , in NeurIPS, 2015. 

● Inefficient in training time

● Cannot perform end-to-end 

joint learning

● Cannot handle missing label



Contribution

•Novel objective that leverages the word2vec embedding methods

•Optimized efficiently by matrix factorization, thus faster than SLEEC

• Can do joint learning of embedding-regression, more accurate than SLEEC 

• Can easily incorporates side information, thus handling the missing labels
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word2vec

Similar words are found in similar locations (src: http://suriyadeepan.github.io) 8

http://suriyadeepan.github.io/


SGNS meets Label Embedding

•word2vec embedding using Skip Gram Negative Sampling objective

• replacing words with the instance label vectors in the training sets
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SGNS as Matrix Factorization

• Levy et al. showed that solving SGNS objective is equivalent to matrix 
factorization of shifted pointwise mutual information (SPPMI) matrix
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Proposed ExMLDS Algorithm

•Overall, multi-iteration SVP replaced with single step SVD

• Regression and prediction algorithm remain same as in SLEEC.

•We observe the ExMLDS training is 10x faster than SLEEC.
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Incorporating Label-Label Correlation

• Learn the embeddings of labels as well as instances jointly.

• Overall Idea : 

• think of labels as individual words

• think of instances with the active label as sentence

• Use extra label correlation information for label embedding

• Helps in handling the missing label problem efficiently
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• Joint learning objective for the SLEEC algorithm 

•  it’s highly non-convex as well as non-differentiable
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ExMLDS Jointly Learning
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 Efficient Training

         Training time

          Performance

ExMLDS1 much faster than SLEEC
with almost equal performance
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Performance with Missing Labels

We hide randomly 80% of the labels from training labels. We provide extra YY’ 
(original) complete label-label correlation matrix along with masked Y to both 
LEML-IMC and ExMLDS3. 
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Performance with Joint Learning 
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Conclusions

•Novel objective for XML that leverages the word2vec embedding method

•Optimized efficiently by matrix factorization, making it’s faster than SLEEC

•Objective can jointly learn and obtain better results compared to SLEEC

• Easily incorporates side information, that is useful for handling missing labels
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Takeaway Point

•Distributional Semantics algorithms can be efficiently utilize for XML task

• Joint learning of embedding and regression could be beneficial for XML task

Questions to Ponder?

• Can we jointly embed instance feature (x) and instance label (y) for XML task ?

• Better method for selection of negative samples while instance embedding ?
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