# P-SIF: Document Embeddings Using Partition Averaging

Vivek Gupta<sup>1,2</sup>, Ankit Saw<sup>3</sup>, Pegah Nokhiz<sup>1</sup>, Praneeth Netrapalli<sup>2</sup> Piyush Rai<sup>4</sup> and Partha Talukdar<sup>5</sup>



<sup>1</sup>University of Utah, USA; <sup>2</sup>Microsoft Research, India <sup>3</sup>InfoEdge Ltd., India <sup>4</sup>Indian Institute of Technology, Kanpur <sup>5</sup>Indian Institute of Science, Bangalore

11 February 2020 **AAAI 2020, New York** 





#### **Motivation**

- Natural language requires good semantic representations of textual documents
  - Text Categorization
  - Information Retrieval
  - Text Similarity
- Good semantic representation of words exists, i.e., **Word2vec (SGNS, CBOW)** created by Mikolov et al., **Glove** (Socher et al.) and many more.
- What About Documents?
  - Multiple Approaches based on local context, topic modelling, context sensitive learning
  - **Semantic Composition** in natural language is the task of modelling the meaning of a larger piece of text (document) by composing the meaning of its constituents/parts (words).
    - Our work focus on using simple semantic composition

## **Efforts for Document Representation**



Doc2Vec (Le & Mikolov, 2014) Local (Global context

Document
Multiple
topic

<del>Larger</del>

Graded Weighted No. 2015, Arora Weighted Average Sentence Embedding Control of the Control of th

Deep Learning LSTM, RNN, Bi-LSTM, RTNN, LSTM Attention Contextual Embedding ELMo, BERT



TWE (Liu et al., 2015a)
Topic Modelling



NTSG (Liu et al., 2015b)
Topic Modelling + Context Sensitive Learning

## **Averaging vs Partition Averaging**

"Data journalists deliver the news of data science to general public, they often take part in interpreting the data models, creating graphical designs and interviewing the director and CEOs."



## Pre-computation of Word-topics Vector



## **Final Document Representation**



## Connection with simple weighted averaging

Similar to simple weighted averaging model we average word topic vectors instead of word vectors

## **Ways to Partition Vocabulary**

**Hard Clustering:** Assign each word to a single cluster. K-means over word vectors.

**Soft Clustering:** Assign each word to multiple cluster with probability. Gaussian Mixture Model (GMM) over word vectors

**Soft Clustering + Thresholding**: Soft Clustering followed by post - processing assignment value below certain threshold (th) to exact 0.

$$\alpha (c_k | w)$$

**Dictionary Learning**: Use sparsity constraint to find minimal basis set. Analogous to soft clustering with sparsity constraint (only k/K non-zero). K-svd over word vectors.

## **Ways to Partition Vocabulary**

| Partition Type                 | Properties |                         |                            |                             |  |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------|-----------------------------|--|--|--|
|                                | Multi-Sense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Representation Sparsity | Non-Redundancy (Diversity) | Pre-Computation (Efficient) |  |  |  |
| Hard Clustering                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>√</b>                | ×                          | X                           |  |  |  |
| Soft Clustering                | <b>✓</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×                       | ×                          | ✓                           |  |  |  |
| Soft Clustering + Thresholding | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ✓                       | ×                          | ✓                           |  |  |  |
| Dictionary<br>Learning         | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ✓                       | <b>√</b>                   |                             |  |  |  |

#### **Ways to Represent Words**

**SGNS:** word2vec algorithm namely Skip Gram with Negative Sampling. Give uni-sense embedding per words.

**Doc2VecC:** Like SGNS give uni-sense embedding per word but train with corruptions in examples this encourse zeroing of common word vectors.

**Multi-Sense + Doc2VecC**: Annotated each word in corpus with it sense, for e.g. word bank as (bank#1, bank#2) based on context in use (river bank, financial institution) and then train Doc2VecC on annotated corpus.

**BERT:** Fine grain context aware representation, shown to capture word order and syntax in sentence.

## **Ways to Represent Words**

| Embedding Type            | Properties |                      |                   |  |  |  |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|--|--|--|
|                           | Noise Robustness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Context Aware</b> | Word Order-Syntax |  |  |  |
| SGNS                      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                    | X                 |  |  |  |
| Doc2VecC                  | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X                    | X                 |  |  |  |
| Multi-Sense<br>+ Doc2VecC | <b>√</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>√</b>             | X                 |  |  |  |
| BERT                      | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>✓</b>             | <b>√</b>          |  |  |  |

For effect of using multi-sense embedding see our recent work at ECAI 20, Spain

## Multi-Class Classification – 20NewsGroup (40-80 words)

| Model            | Accuracy (†) | Precision (↑) | Recall (↑) | F1-Score (↑) |
|------------------|--------------|---------------|------------|--------------|
| P-SIF            | 86.0         | 86.1          | 86.1       | 86.0         |
| SCDV             | 84.6         | 84.6          | 84.5       | 84.6         |
| BoWV             | 81.6         | 81.1          | 81.1       | 80.9         |
| weight-Avg (SIF) | 81.9         | 81.7          | 81.9       | 81.7         |

#### **Partition Averaging Algorithm**

- P-SIF: Dictionary learning
- SCDV (Mekala et. al, EMNLP 17): GMM clustering
- BoWV (Gupta et. al, Coling 16): k-means clustering
- weight-Avg (SIF, Arora et. al. 17): No partitioning

P-SIF uses only 20 partitions for best performance compared to 60 in SCDV

## Multi-Class Classification – 20NewsGroup (40-80 words)

| Model             | Accuracy (↑) | Precision (↑) | Recall (↑) | F1-Score (↑) |
|-------------------|--------------|---------------|------------|--------------|
| P-SIF             | 86.0         | 86.1          | 86.1       | 86.0         |
| SCDV              | 84.6         | 84.6          | 84.5       | 84.6         |
| BoWV              | 81.6         | 81.1          | 81.1       | 80.9         |
| weight -Avg (SIF) | 81.9         | 81.7          | 81.9       | 81.7         |
| BERT (pr)         | 84.9         | 84.9          | 85.0       | 85.0         |
| NTSG-1            | 82.6         | 82.5          | 81.9       | 81.2         |
| TWE-1             | 81.5         | 81.2          | 80.6       | 80.6         |
| Doc2Vec           | 75.4         | 74.9          | 74.3       | 74.3         |

P-SIF uses only 20 partitions for best performance compared to 60 in SCDV

## Multi-Label Classification - Reuters (200-400 words)

| Model            | Prec@1 (↑) | Prec@5 (↑) | Coverage (↑) | F1-Score (↑) |
|------------------|------------|------------|--------------|--------------|
| P-SIF            | 94.92      | 37.98      | 93.97        | 82.87        |
| SCDV             | 94.20      | 36.98      | 93.52        | 81.75        |
| BoWV             | 92.90      | 36.14      | 91.84        | 79.16        |
| weight-Avg (SIF) | 89.33      | 35.04      | 91.68        | 71.97        |

#### **Partition Averaging Algorithm**

- P-SIF: Dictionary learning
- SCDV (Mekala et. al, EMNLP 17): GMM clustering
- BoWV (Gupta et. al, Coling 16): k-means clustering
- weight-Avg (SIF, Arora et. al. 17): No partitioning

Effect of partitioning more significant than 20NewsGroup due to larger document length

## Multi-Label Classification - Reuters (200-400 words)

| Model            | Prec@1 (↑) | Prec@5 (↑) | Coverage (↑) | F1-Score (†) |
|------------------|------------|------------|--------------|--------------|
| P-SIF            | 94.92      | 37.98      | 93.97        | 82.87        |
| SCDV             | 94.20      | 36.98      | 93.52        | 81.75        |
| BoWV             | 92.90      | 36.14      | 91.84        | 79.16        |
| weight-Avg (SIF) | 89.33      | 35.04      | 91.68        | 71.97        |
| BERT (pr)        | 93.80      | 37.00      | 93.70        | 81.90        |
| TWE-1            | 90.91      | 35.49      | 91.84        | 79.16        |
| Doc2Vec          | 88.78      | 34.51      | 88.72        | 73.68        |

Effect of partitioning more significant than 20NewsGroup due to large length

#### **Semantic Textual Similarity (27 Datasets)**



|       | Document 1 $(d_n^1)$                                                                                                                                         |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Doc   | A man is riding a motorcycle                                                                                                                                 |
| SIF   | $ec{v}_{	ext{man}_2} + ec{v}_{	ext{riding}_3} + ec{v}_{	ext{motorcycle}_4}$                                                                                  |
| P-SIF | $\vec{v}_{\text{zero}_1} \oplus \vec{v}_{\text{man}_2} \oplus \vec{v}_{\text{riding}_3} \oplus \vec{v}_{\text{motorcycle}_4} \oplus \vec{v}_{\text{zero}_5}$ |

|       | Document $2 (d_n^2)$                                                                                                                                                |  |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Doc   | A woman is riding a horse                                                                                                                                           |  |  |  |  |
| SIF   | $ec{v}_{	ext{woman}_1} + ec{v}_{	ext{riding}_3} + ec{v}_{	ext{horse}_5}$                                                                                            |  |  |  |  |
| P-SIF | $\vec{v}_{\mathrm{women}_1} \oplus \vec{v}_{\mathrm{zero}_2} \oplus \vec{v}_{\mathrm{riding}_3} \oplus \vec{v}_{\mathrm{zero}_4} \oplus \vec{v}_{\mathrm{horse}_5}$ |  |  |  |  |

| Similarity Scores                  |      |      |  |  |  |
|------------------------------------|------|------|--|--|--|
| Ground Truth weigh-Avg (SIF) P-SIF |      |      |  |  |  |
| 0.15                               | 0.57 | 0.16 |  |  |  |

## **Semantic Textual Similarity (27 Datasets)**

| STS12    | STS13    | STS14      | STS15            | STS16             |
|----------|----------|------------|------------------|-------------------|
| MSRpar   | headline | deft forum | answers-forums   | headlines         |
| MSRvid   | OnWN     | deft news  | answers-students | plagiarism        |
| SMT-eur  | FNWN     | headline   | belief           | posteditng        |
| OnWN     | SMT      | images     | headline         | answer-answer     |
| SMT-news |          | OnWN       | images           | question-question |
|          |          | tweet news |                  |                   |

## Results (Pearson r X 100) on Semantic Textual Similarity

| Model →<br>Dataset ↓ | PP<br>-Proj | RNN  | WME<br>+PSL | Infer<br>Sent | BERT<br>(pr) | GRAN | Glove<br>+WR | SIF<br>+PSL | PSIF<br>+PSL |
|----------------------|-------------|------|-------------|---------------|--------------|------|--------------|-------------|--------------|
| STS12                | 60.0        | 58.4 | 62.8        | 61            | 53           | 62.5 | 56.2         | 59.5        | 65.7         |
| STS13                | 56.8        | 56.7 | 56.3        | 56            | 67           | 63.4 | 56.6         | 61.8        | 64.0         |
| STS14                | 71.3        | 70.9 | 68.0        | 68            | 62           | 75.9 | 68.5         | 73.5        | 74.8         |
| STS15                | 74.8        | 75.6 | 64.2        | 71            | 73           | 77.7 | 71.7         | 76.3        | 77.3         |
| STS16                | -           | 64.9 | -           | 77            | 67           | -    | 72.4         | 72.5        | 73.7         |

## Relative Performance (P-SIF – SIF)/SIF (%) Improvement



#### **Theoretical Justification**

We provide theoretical justifications of P-SIF by showing connections with random walk-based latent variable models in (Arora et al. 2016a; 2016b, TACL 16,18) and SIF embedding (Arora, Liang, and Ma 2017, ICLR 17).

We **relax one assumption** and **introduce context jump** in the SIF embedding to show that our approach P-SIF embedding is a **generalization** of the SIF sentence embedding which is a special case of with number of clusters K = 1.

## **Takeaways**

- ✓ Replace weighted word vector averaging (SIF) with partition based averaging (P-SIF) for a strong baseline for document representation. (capture local + global semantics)
  - Dictionary Learning better than GMM Clustering + Hard Threshold: Imposing sparsity constraint during partitioning is beneficial.
  - GMM/Dictionary Learning better than K-means Clustering: Soft clustering is better than hard clustering
- ✓ Noise in words level representation is influential on the final downstream tasks. Doc2VecC for better word representation than SGNS.

Paper ID: 3656, visit our poster in the evening session to know more! (such as interesting connections to kernels)

my email: <a href="mailto:keviv9@gmail.com">keviv9@gmail.com</a>, web: <a href="mailto:vgupta123.github.io">vgupta123.github.io</a>

## Acknowledgement

- Anonymous reviewers of ICLR'19 and AAAI'20 whose reviews really helped in improving the paper
- AAAI'20 Student Scholar and Volunteer Program for the needful support
- Prof. Vivek Srikumar, Prof. Ellen Riloff, Prof. Aditya Bhaskara and Prof. Suresh Venkatasubramanian of School of Computing, University of Utah for useful feedback
- Microsoft Research Lab, Bangalore; School of Computing, University of Utah and Indian Institute of Technology, Kanpur for needed support and guidance

#### References

- **BoWV**: Vivek Gupta and Harish Karnick et al, "*Product Classification in e-Commerce using Distributional Semantics*", In Proc COLING 2016
- **SCDV**: Dheeraj Mekala\*, Vivek Gupta\*, Bhargavi Paranjape and Harish Karnick, "Sparse Composite Document Vectors using Soft Clustering over Distributional Semantics", In Proc EMNLP 2017
- SCDV-MS: Vivek Gupta et. al. "Word Polysemy Aware Document Vector Estimation", In Proc ECAI 2020.
- NTSG: Pengfei Liu and Xipeng Qiu et al., "Learning Context-Sensitive Word Embedding's with Neural Tensor Skip-Gram Model", In Proc IJCAI 2015
- TWE: Yang Liu and Zhiyuan Liu et al, "Topical Word Embeddings" In Proc AAAI, 2015
- Lda2Vec: Chris Moody "Mixing Dirichlet Topic Models and Word Embeddings to Make Ida2vec", arXiv:1605.02019
- WMD: Matt J. Kusner et al., "From Word Embeddings To Document Distance", In ICML 2015
- WME: Lingfei Wu, Ian E.H. Yen et. al., "Word Mover's Embedding: From Word2Vec to Document Embedding", In EMNLP 2018
- SIF: Sanjeev Arora and Yingyu Liang "A Simple but tough-to-beat baseline for sentence embedding's", In ICLR 2017
- **Polysemy**: Sanjeev Arora and Yuanzhi Li et al. "Linear algebraic structure of word senses, with applications to polysemy", In TACL 2018
- Doc2vec: Quoc V Le and Tomas Mikolov. "Distributed Representations of Sentences and Documents" In: ICML 2014

#### **Limitations**

➤ Doesn't account for syntax, grammar, and words order and only focuses on effective capturing of local and global semantics.

★ Currently, a disjoint process of partitioning, averaging and task learning: can we model everything as a single joint process?

## **Positive Qualitative Results (MSRvid)**

| sentence1                         | sentence2                           | GT    | NGT    | $\mathrm{SIF}_{sc}$ | $P$ -SIF $_{sc}$ |
|-----------------------------------|-------------------------------------|-------|--------|---------------------|------------------|
| People are playing baseball.      | The cricket player hit the ball.    | 0.5   | 0.1    | 0.2928              | 0.0973           |
| A woman is carrying a boy.        | A woman is carrying her baby.       | 2.333 | 0.4666 | 0.5743              | 0.4683           |
| A man is riding a motorcycle.     | A woman is riding a horse.          | 0.75  | 0.15   | 0.5655              | 0.157            |
| A woman slices a lemon.           | A man is talking into a microphone. | 0     | 0      | -0.1101             | -0.0027          |
| $\Lambda$ man is hugging someone. | $\Lambda$ man is taking a picture.  | 0.4   | 0.08   | 0.2021              | 0.0767           |
| A woman is dancing.               | A woman plays the clarinet.         | 0.8   | 0.16   | 0.3539              | 0.1653           |
| A train is moving.                | A man is doing yoga.                | 0     | 0      | 0.1674              | -0.0051          |
| Runners race around a track.      | Runners compete in a race.          | 3.2   | 0.64   | 0.7653              | 0.6438           |
| A man is driving a car.           | A man is riding a horse.            | 1.2   | 0.24   | 0.3584              | 0.2443           |
| A man is playing a guitar.        | A woman is riding a horse.          | 0.5   | 0.1    | -0.0208             | 0.0955           |
| A man is riding on a horse.       | A girl is riding a horse.           | 2.6   | 0.52   | 0.6933              | 0.5082           |
| A woman is deboning a fish.       | A man catches a fish.               | 1.25  | 0.25   | 0.4538              | 0.2336           |
| A man is playing a guitar.        | A man is eating pasta.              | 0.533 | 0.1066 | -0.0158             | 0.0962           |
| A woman is dancing.               | A man is cating.                    | 0.143 | 0.0286 | -0.1001             | 0.0412           |
| The ballerina is dancing.         | $\Lambda$ man is dancing.           | 1.75  | 0.35   | 0.512               | 0.3317           |
| A woman plays the guitar.         | A man sings and plays the guitar.   | 1.75  | 0.35   | 0.5036              | 0.3683           |
| A girl is styling her hair.       | A girl is brushing her hair.        | 2.5   | 0.5    | 0.7192              | 0.5303           |
| A guy is playing hackysack        | A man is playing a key-board.       | 1     | 0.2    | 0.3718              | 0.2268           |
| A man is riding a bicycle.        | A monkey is riding a bike.          | 2     | 0.4    | 0.6891              | 0.4614           |
| A woman is swimming underwater.   | A man is slicing some carrots.      | 0     | 0      | -0.2158             | -0.0562          |
| A plane is landing.               | A animated airplane is landing.     | 2.8   | 0.56   | 0.801               | 0.6338           |
| The missile exploded.             | A rocket exploded.                  | 3.2   | 0.64   | 0.8157              | 0.6961           |
| A woman is pecling a potato.      | A woman is peeling an apple.        | 2     | 0.4    | 0.6938              | 0.5482           |
| $\Lambda$ woman is writing.       | $\Lambda$ woman is swimming.        | 0.5   | 0.1    | 0.3595              | 0.2334           |
| A man is riding a bike.           | A man is riding on a horse.         | 2     | 0.4    | 0.6781              | 0.564            |
| A panda is climbing.              | A man is climbing a rope.           | 1.6   | 0.32   | 0.4274              | 0.3131           |
| A man is shooting a gun.          | A man is spitting.                  | O     | 0      | 0.2348              | 0.1305           |

## **Negative Qualitative Results (MSRvid)**

| sentence1                             | sentence2                                | GT    | NGT    | $\mathrm{SIF}_{sc}$ | $P	ext{-SIF}_{sc}$ |
|---------------------------------------|------------------------------------------|-------|--------|---------------------|--------------------|
| takes off his sunglasses.             | A boy is screaming.                      | 0.5   | 0.1    | 0.1971              | 0.3944             |
| The rhino grazed on the grass.        | A rhino is grazing in a field.           | 4     | 0.8    | 0.7275              | 0.538              |
| An animal is biting a persons finger. | A slow loris is biting a persons finger. | 3     | 0.6    | 0.6018              | 0.7702             |
| Animals are playing in water.         | Two men are playing ping pong.           | 0     | 0      | 0.0706              | 0.2238             |
| Someone is feeding a animal.          | Someone is playing a piano.              | 0     | 0      | -0.0037             | 0.1546             |
| The lady sliced a tomatoe.            | Someone is cutting a tomato.             | 4     | 0.8    | 0.693               | 0.5591             |
| The lady peeled the potatoe.          | A woman is peeling a potato.             | 4.75  | 0.95   | 0.7167              | 0.5925             |
| A man is slicing something.           | A man is slicing a bun.                  | 3     | 0.6    | 0.5976              | 0.4814             |
| A boy is crawling into a dog house.   | A boy is playing a wooden flute.         | 0.75  | 0.15   | 0.1481              | 0.2674             |
| A man and woman are talking.          | A man and woman is eating.               | 1.6   | 0.32   | 0.3574              | 0.4711             |
| A man is cutting a potato.            | A woman plays an electric guitar.        | 0.083 | 0.0166 | -0.1007             | -0.2128            |
| A person is cutting a meat.           | A person riding a mechanical bull        | 0     | 0      | 0.0152              | 0.1242             |
| A woman is playing the flute.         | A man is playing the guitar.             | 1     | 0.2    | 0.1942              | 0.0876             |

## **Kernel Connection with Embeddings**

$$K^1(D_A,D_B) = \frac{1}{nm} \sum_{i=1}^n \sum_{j=1}^m \langle \vec{wv}_{w_i^A} \cdot \vec{wv}_{w_j^B} \rangle \quad \text{word vector averaging}$$

**Topical Word Embedding (TWE)** 

$$K^{2}(D_{A}, \vec{D_{B}}) = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} \langle \vec{v_{w_{i}^{A}}} \cdot \vec{v_{w_{j}^{B}}} \rangle + \langle \vec{tv_{w_{i}^{A}}} \cdot \vec{t_{w_{j}^{B}}} \rangle$$

Our Partitioning Model (P-SIF)

$$K^{3}(D_{A}, D_{B}) = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} \langle \vec{v}_{w_{i}^{A}} \cdot \vec{v}_{w_{j}^{B}} \rangle \times \langle \vec{t}_{w_{i}^{A}} \cdot \vec{t}_{w_{j}^{B}} \rangle$$

$$K^4(D_A, D_B) = \frac{1}{n} \sum_{i=1}^n \max_j \langle \vec{v}_{w_i^A} \cdot \vec{v}_{w_j^B} \rangle$$
 word mover distance