**P-SIF: Document Embeddings using Partition Averaging** Vivek Gupta<sup>(1,2)</sup>, Ankit Saw<sup>(3)</sup>, Pegah Nokhiz<sup>(1)</sup>, Praneeth Netrapalli<sup>(2)</sup>, Piyush Rai<sup>(4)</sup>, Partha Talukdar<sup>(5)</sup>

(1) University of Utah; (2) Microsoft Research Lab, India; (3) InfoEdge Ltd., India; (4) IIT Kanpur; (5) IISC, Bangalore

### **Distributional Semantics**

- Each word (w) or sentence (s) is represented using a vector  $\vec{v} \in \mathbf{R}^d$
- Semantically similar words or sentences occur closer in the vector space
- Various methods like word2vec (SGNS) and Doc2vec (PV-DBOW).

### Averaging vs Partition Averaging

"Data journalists deliver data science news to the general public. They often take part in interpreting the data models. Also, they create graphical designs and interview the directors and CEOs."



• Direct Averaging to represent document  $\vec{v}_{\text{data}_2} + \vec{v}_{\text{journalist}_4} + \vec{v}_{\text{news}_4} + \vec{v}_{\text{datascience}_1}$  $+\vec{v}_{\text{public}_4} + \vec{v}_{\text{interpreting}_1} + \vec{v}_{\text{models}_2} + \vec{v}_{\text{graphical}_1}$  $+\vec{v}_{\text{design}_1} + \vec{v}_{\text{director}_5} + \vec{v}_{\text{CEO}_5} + \vec{v}_{\text{interviewing}_2}$ 

• Partition Averaging to represent document

 $(\vec{v_{interpreting}} + \vec{v_{graphical}} + \vec{v_{design}}) \oplus (\vec{v_{data}})$  $+\vec{v_{datascience}} + \vec{v_{models}}) \oplus (\vec{v_{journalist}} + \vec{v_{news}})$  $+\vec{v}_{public}) \oplus (\vec{v}_{director} + \vec{v}_{CEO}) \oplus \vec{v}_{interviewing}$ 

• Weighted Partition Averaging to represent document

 $(\vec{v}_{interpreting_1} + \vec{v}_{graphical_1} + \vec{v}_{design_1} + 0.3 * \vec{v}_{data_1}) \oplus$  $(0.7 * \vec{v}_{data_2} + \vec{v}_{datascience_2} + \vec{v}_{models_2}) \oplus (\vec{v}_{journalist_4})$  $+\vec{v}_{\text{news}_4} + 0.7 * \vec{v}_{\text{public}_4}) \oplus (\vec{v}_{\text{director}_5} + 0.3 * \vec{v}_{\text{public}_5})$  $+\vec{v}_{\text{CEO}_5} + 0.2 * \vec{v}_{\text{interviewing}_5}) \oplus 0.8 * \vec{v}_{\text{interviewing}_3}$ 

# Ways to Partition Vocabulary

| Partition Type                    | Properties   |                            |                               |                                |  |  |  |
|-----------------------------------|--------------|----------------------------|-------------------------------|--------------------------------|--|--|--|
|                                   | Multi-Sense  | Representation<br>Sparsity | Non-Redundancy<br>(Diversity) | Pre-Computation<br>(Efficient) |  |  |  |
| Hard Clustering                   | ×            | $\checkmark$               | ×                             | ×                              |  |  |  |
| Soft Clustering                   | $\checkmark$ | ×                          | ×                             | $\checkmark$                   |  |  |  |
| Soft Clustering<br>+ Thresholding | $\checkmark$ | $\checkmark$               | ×                             | ×                              |  |  |  |
| Dictionary<br>Learning            | $\checkmark$ | <b>√</b>                   | $\checkmark$                  | $\checkmark$                   |  |  |  |

# Ways to Represent Words

| Embedding Type            | Properties       |               |                   |  |  |  |
|---------------------------|------------------|---------------|-------------------|--|--|--|
|                           | Noise Robustness | Context Aware | Word Order-Syntax |  |  |  |
| SGNS                      | ×                | ×             | ×                 |  |  |  |
| Doc2VecC                  | $\checkmark$     | ×             | ×                 |  |  |  |
| Multi-Sense<br>+ Doc2VecC | $\checkmark$     | $\checkmark$  | ×                 |  |  |  |
| BERT                      | $\checkmark$     | $\checkmark$  | $\checkmark$      |  |  |  |

# Kernels meet Embeddings

Simple Word Vector Averaging :  $K^{1}(D_{A}, D_{B}) = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} \langle \vec{v}_{w_{i}^{A}} \cdot \vec{v}_{w_{j}^{B}} \rangle$ **2** TWE: Topical Word Embeddings :  $K^2(D_A, D_B) = \frac{1}{nm} \sum_{i=1}^n \sum_{j=1}^m \langle \vec{v}_{w_i^A} \cdot \vec{v}_{w_j^B} \rangle + \langle \vec{t} \vec{v}_{w_i^A} \cdot \vec{t}_{w_j^B} \rangle$ **3**P-SIF: Partition Word Vector Averaging :  $K^{3}(D_{A}, D_{B}) = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} \langle \vec{v}_{w_{i}^{A}} \cdot \vec{v}_{w_{j}^{B}} \rangle \times \langle \vec{t}_{w_{i}^{A}} \cdot \vec{t}_{w_{j}^{B}} \rangle$ • Relaxed Word Mover Distance :  $K^4(D_A, D_B) = \frac{1}{n} \sum_{i=1}^n \max_j \langle \vec{v}_{w_i^A} \cdot \vec{v}_{w_j^B} \rangle$ 

# **Theoretical Justification of P-SIF**

• We provide theoretical justifications of P-SIF by showing connections with random walk-based latent variable models (Arora et al. 2016a; 2016b) and SIF embedding (Arora, Liang, and Ma 2017).

• We relax one assumption in SIF to show that our P-SIF embedding is a strict generalization of the SIF embedding which is a special case with K = 1.





• Experiment on other datasets are reported in the paper



## Text Similarity Task

|                      | Document 1 $(d_n^1)$                                                                 |                    |                     |                                 |          |                               |            |                     | 10           |             |         |
|----------------------|--------------------------------------------------------------------------------------|--------------------|---------------------|---------------------------------|----------|-------------------------------|------------|---------------------|--------------|-------------|---------|
| Doc                  |                                                                                      | A                  | A man               | is rie                          | ding a   | moto                          | rcycle     | 9                   |              |             |         |
| SIF                  | $\vec{v}_{\text{man}_2} + \vec{v}_{\text{riding}_3} + \vec{v}_{\text{motorcycle}_4}$ |                    |                     |                                 |          |                               |            | nt                  |              |             |         |
| P-SIF                | $\vec{v}_{ m zero_1}$                                                                | $\oplus \vec{v}_1$ | man <sub>2</sub> (  | $\oplus \vec{v}_{\mathrm{rid}}$ | $ling_3$ | $\vec{v}_{\mathrm{mot}}$      | orcycle    | $_4 \oplus \bar{v}$ | zero5        | еше         | 8       |
|                      |                                                                                      |                    |                     |                                 |          |                               |            | rov                 |              |             |         |
|                      | Document 2 $(d_n^2)$                                                                 |                    |                     |                                 |          |                               |            | Imp                 | 6            |             |         |
| Doc                  |                                                                                      |                    | A wor               | man i                           | s ridi   | ng a h                        | orse       |                     |              | ю           |         |
| SIF                  |                                                                                      | $\overline{v}$     | woman               | 11 + i                          | riding   | $+\vec{v}_{\rm h}$            | Orses      |                     |              | ura         |         |
| P-SIF                | $\vec{v}_{ m wom}$                                                                   | en1                | $\vec{v}_{ m zero}$ | $b_2 \oplus i$                  | riding   | $\oplus \vec{v}_{\mathrm{z}}$ | ero4       | $\vec{v}_{ m hor}$  | se5          | Acc         | 4       |
|                      |                                                                                      |                    | Simil               | arity                           | Score    | <u>د</u>                      |            |                     |              | ive         |         |
|                      |                                                                                      |                    |                     | arrey                           |          | 5                             |            |                     |              | lat         | 2       |
|                      | Grou                                                                                 | und Tru            | ith w               | eigh-Av                         | vg (SIF) | P-S                           | IF         |                     |              | Re          |         |
|                      |                                                                                      | 0.15               |                     | 0.5                             | 7        | 0.1                           | 6          |                     |              |             | 0       |
| STS12                | STS                                                                                  | 13                 | STS14               | l.                              | STS      | 15                            |            | STS16               |              |             |         |
| MSRpar               | headl                                                                                | ine c              | left foru           | im a                            | nwsers-  | forums                        | h          | eadline             | S            |             |         |
| MSRvid               | OnW                                                                                  | 'N<br>VN           | deft new            | vs ai                           | nswers-s | tudents                       | pl         | agiarisr            | n            |             |         |
| OnWN                 | FNW<br>SM                                                                            | Γ                  | images              | e<br>S                          | headl    | ine                           | pc<br>ansv | ver-ansv            | g<br>wer     |             | Et      |
| SMT-news             |                                                                                      | -                  | OnWN                | I                               | imag     | jes                           | quest      | ion-que             | stion        |             |         |
|                      |                                                                                      | t                  | weet ne             | WS                              |          |                               |            |                     |              |             |         |
| Model →<br>Dataset ⊥ | PP<br>-Proi                                                                          | RNN                | WME<br>+PSI         | Infer<br>Sent                   | BERT     | GRAN                          | Glove      | SIF                 | PSIF<br>+DSI | <b>1</b> Be | etter i |
|                      |                                                                                      | F0 4               |                     |                                 | (P)      | <b>62 F</b>                   |            |                     |              | <b>2</b> 0} | otains  |
| 51512                | 60.0                                                                                 | 58.4               | 62.8                | 61                              | 53       | 62.5                          | 56.2       | 59.5                | 65.7         | o Ff        | foctiv  |
| STS13                | 56.8                                                                                 | 56.7               | 56.3                | 56                              | 67       | 63.4                          | 56.6       | 61.8                | 64.0         |             |         |
| STS14                | 71.3                                                                                 | 70.9               | 68.0                | 68                              | 62       | 75.9                          | 68.5       | 73.5                | 74.8         |             |         |
| STS15                | 74.8                                                                                 | 75.6               | 64.2                | 71                              | 73       | 77.7                          | 71.7       | 76.3                | 77.3         |             |         |
| STS16                | -                                                                                    | 64.9               | -                   | 77                              | 67       | -                             | 72.4       | 72.5                | 73.7         |             |         |
|                      |                                                                                      |                    |                     |                                 |          |                               |            |                     |              | <b>1</b> Pa | rtitio  |

# **Text Classification Task**

#### • Multi-class text classification on 20NewsGroup

| Model         | Accuracy (1) | Precision (1) | Recall (↑) | F1-Score (↑) |
|---------------|--------------|---------------|------------|--------------|
| P-SIF         | 86.0         | 86.1          | 86.1       | 86.0         |
| SCDV          | 84.6         | 84.6          | 84.5       | 84.6         |
| BoWV          | 81.6         | 81.1          | 81.1       | 80.9         |
| ht -Avg (SIF) | 81.9         | 81.7          | 81.9       | 81.7         |
| BERT (pr)     | 84.9         | 84.9          | 85.0       | 85.0         |
| NTSG-1        | 82.6         | 82.5          | 81.9       | 81.2         |
| TWE-1         | 81.5         | 81.2          | 80.6       | 80.6         |
| Doc2Vec       | 75.4         | 74.9          | 74.3       | 74.3         |

#### • Multi-label text classification on Reuters

|            |                                                                                                              |                                                                                            | Delevelation                                                                                                                            |
|------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Prec@1 (↑) | Prec@5 (↑)                                                                                                   | Coverage (↑)                                                                               | F1-Score (↑)                                                                                                                            |
| 94.92      | 37.98                                                                                                        | 93.97                                                                                      | 82.87                                                                                                                                   |
| 94.20      | 36.98                                                                                                        | 93.52                                                                                      | 81.75                                                                                                                                   |
| 92.90      | 36.14                                                                                                        | 91.84                                                                                      | 79.16                                                                                                                                   |
| 89.33      | 35.04                                                                                                        | 91.68                                                                                      | 71.97                                                                                                                                   |
| 93.80      | 37.00                                                                                                        | 93.70                                                                                      | 81.90                                                                                                                                   |
| 90.91      | 35.49                                                                                                        | 91.84                                                                                      | 79.16                                                                                                                                   |
| 88.78      | 34.51                                                                                                        | 88.72                                                                                      | 73.68                                                                                                                                   |
|            | Prec@1 (1)         94.92         94.20         92.90         89.33         93.80         90.91         88.78 | Prec@1 (1)Prec@5 (1)94.9237.9894.2036.9892.9036.1489.3335.0493.8037.0090.9135.4988.7834.51 | Prec@1(1)Prec@5(1)Coverage (1)94.9237.9893.9794.2036.9893.5292.9036.1491.8489.3335.0491.6893.8037.0093.7090.9135.4991.8488.7834.5188.72 |



handling of the multi-sense words more diverse non-redundant partitions vely combine local and global semantics

on Averaging is better than Averaging ② Disambiguating multi-sense ambiguity helps • Noise in word representations is of huge impact

• Doesn't account for syntax, grammar, and order ② Disjoint process of partitioning, averaging and task learning

- TACL 2018.
- 2016.



### ffect of Sparse Partitioning

## Takeaways

### Limitations

### References

• Arora, Sanjeev, et al. *Linear algebraic structure of* word senses, with applications to polysemy.

• Arora, Sanjeev, et al. A latent variable model approach to pmi-based word embeddings. TACL

• Arora, Sanjeev, et al. A simple but tough-to-beat baseline for sentence embeddings. ICLR 2017.