Distributional Semantics meets Multi-Label Learning

Vivek Gupta'?, Rahul Wadbude?, Nagarajan Natarajan®, Harish Karnick?,
Prateek Jain’, Piyush Rai’
School of Computing, University of Utah, 2Computer Science Department, IIT Kanpur
3Microsoft Research Lab, Bangalore
vgupta@cs.utah.edu, rahulwadbude2 @ gmail.com, nagarajn @microsoft.com, hk@cse.iitk.ac.in
prajain @microsoft.com, piyush@cse.iitk.ac.in

Abstract

We present a label embedding based approach to large-scale
multi-label learning, drawing inspiration from ideas rooted
in distributional semantics, specifically the Skip Gram Nega-
tive Sampling (SGNS) approach, widely used to learn word
embeddings. Besides leading to a highly scalable model for
multi-label learning, our approach highlights interesting con-
nections between label embedding methods commonly used
for multi-label learning and paragraph embedding methods
commonly used for learning representations of text data. The
framework easily extends to incorporating auxiliary informa-
tion such as label-label correlations; this is crucial especially
when many training instances are only partially annotated. To
facilitate end-to-end learning, we develop a joint learning al-
gorithm that can learn the embeddings as well as a regression
model that predicts these embeddings for the new input to be
annotated, via efficient gradient based methods. We demon-
strate the effectiveness of our approach through an extensive
set of experiments on a variety of benchmark datasets, and
show that the proposed models perform favorably as compared
to state-of-the-art methods for large-scale multi-label learning.
We have released the source code along with the paper’.

Introduction

Data generated in various domains are increasingly multi-
label in nature; images (e.g. Instagram) and documents (e.g.
Wikipedia) are often identified with multiple tags, online ad-
vertisers often associate multiple search keywords with ads,
and so on. Multi-label learning is the problem of learning to
annotate each instance using a subset of labels from a po-
tentially very large label vocabulary. Nowadays, multi-label
learning problems can even have label vocabulary consisting
of millions of labels, popularly known as extreme multi-label
learning (Jain, Prabhu, and Varma 2016; Bhatia et al. 2015;
Babbar and Scholkopf 2017; Prabhu and Varma 2014).

The key challenges in multi-label learning, especially ex-
treme multi-label learning, include: a) training instances
may have a large fraction of labels missing, and b) the la-
bels are often heavy-tailed (Bhatia et al. 2015; Jain, Prabhu,
and Varma 2016) and predicting labels in the tail becomes
significantly hard due to the lack of training data. For

Copyright © 2019, Association for the Advancement of Artificial
Intelligence (Www.aaai.org). All rights re-
served. " https://bit.ly/31AXZ0OD

these reasons, and the sheer scale of data, traditional multi-
label classifiers are rendered impractical. State-of-the-art ap-
proaches to extreme multi-label learning fall broadly under
two classes: 1) embedding based methods, e.g., LEML (Yu
et al. 2014), WSABIE (Weston, Bengio, and Usunier 2010),
SLEEC (Bhatia et al. 2015), PD-SPARSE (Yen et al. 2016),
PPDSPARSE (Yen et al. 2017), and 2) tree-based meth-
ods, e.g., FASTXML (Prabhu and Varma 2014) , PFAS-
TREXML (Jain, Prabhu, and Varma 2016), LEM (Tagami
2017b). The first class of approaches are generally scal-
able and work by embedding the high-dimensional label
vectors to a lower-dimensional space and learning a regres-
sor in that space. In most cases, these methods rely on a
key assumption that the binary label matrix is low rank
and consequently the label vectors can be embedded into
a lower-dimensional space. At the time of prediction, a de-
compression matrix is used to retrieve the original label
vector from the low-dimensional embeddings. As corrob-
orated by recent empirical evidence (Bhatia et al. 2015;
Jain, Prabhu, and Varma 2016), approaches based on stan-
dard structural assumptions such as low-rank label matrix
fail and perform poorly on the tail. The second class of meth-
ods (tree-based) for multi-label learning try to move away
from rigid structural assumptions (Prabhu and Varma 2014;
Jain, Prabhu, and Varma 2016), and have been demonstrated
to work very well especially on the tail labels.

In this paper, we propose a label embedding based ap-
proach for multi-label learning, leveraging word embed-
ding techniques (Mikolov et al. 2013), which have found
resounding success in NLP tasks. We show that by learn-
ing rich word2vec style embedding for instances (and
labels), we can: a) achieve competitive multi-label predic-
tion accuracies which are comparable to state-of-the-art la-
bel embedding approaches, such as SLEEC (Bhatia et al.
2015); b) cope with missing labels, by incorporating auxil-
iary information in the form of label-label co-occurrences, c)
can jointly learn embedding and perform regression, and
d) learn faster than label embedding methods (SLEEC).
We also extend our model to joint learning of label em-
beddings and input-to-embedding regressors, which per-
forms comparatively to the state-of-the-art in multi-label
learning algorithms like ANNEXML (Tagami 2017a), D1S-
MEC (Babbar and Scholkopf 2017) and PPDSPARSE (Yen
et al. 2017) on most of the datasets. Our learning algo-

rithms admit significantly faster implementation as com-
pared to other embedding based approaches. The distinguish-
ing aspect of our work is that it draws inspiration from
distributional semantics approaches (Mikolov et al. 2013;
Le and Mikolov 2014), widely used for learning non-linear
representations of text data for NLP tasks, such as understand-
ing word and document semantics, classifying documents,
etc. In future, we can try to generalize the method with other
NLP techniques used for representing text documents such as
LSTMs (Hochreiter and Schmidhuber 1997), RNNs (Jain and
Medsker 1999) and skip-thought vector (Kiros et al. 2015)
for embedding instance label vector. Our main contributions
are summarized below.

1. We establish a connection between multi-label learning us-
ing label embedding methods and the problem of learning
distributional semantics in text data analysis. We leverage
this connection to design a novel objective function for
multi-label learning that can be solved efficiently using
matrix factorization.

2. Unlike most existing multi-label learning methods, our
method easily extends to leverage label co-occurrence in-
formation while learning the embeddings; this is especially
appealing when many training instances might have incom-
plete annotations.

3. Our models have much faster training times as compared
to state-of-art label embedding methods for extreme multi-
label learning, while being competitive in terms of la-
bel prediction accuracies. We demonstrate this on sev-
eral moderate-sized as well as very large-scale multi-label
benchmark datasets.

4. We show improvement in performance by joint learning
of embedding and regressors through a novel objective.
Our jointly optimized objective is competitive with re-
spect to state-of-the-art methods like ANNEXML (Tagami
2017a), DISMEC (Babbar and Scholkopf 2017) and
PPDsSPARSE (Yen et al. 2017).

5. Our joint objective is flexible to incorporate online param-
eter update using online stochastic gradient decent update
algorithms. This can even help us in learning with limited
labeled data. However, this is beyond the scope of this
paper and is left as future work.

Problem Formulation and Background

We assume that we are given a set of training instances, e.g.,
documents in BoW/tf-idf representation, {x1,Xo,...,X,},
where x; € R? and the associated label/tag vectors
{¥1,¥2,---,¥,}> where y, € {0,1}£. In many cases, one
does not usually observe irrelevant labels; here y;; = 1
indicates that the j*" label is relevant for instance i but
yi; = 0 indicates that the label is missing or irrelevant.
Let Y € {0,1}"*% denote the matrix of label vectors. In
addition, we may have access to label-label co-occurrence
information, denoted by C' € ZiXL (e.g., number of times a
pair of labels co-occur in some external source such as the
wikipedia corpus). The goal in multi-label learning is to learn
a vector-valued function f : x — s, where s € RL scores

the labels (which can be used to rank the labels according to
their relevance).

Embedding-based approaches typically model f as a com-
posite function h(g(x)) where, g : R? — R andh : R —
R%. For example, assuming both g and h as linear transfor-
mations, one obtains the formulation proposed by (Yu et al.
2014). The functions g and h can be learnt using training
instances or label vectors, or both. More recently, non-linear
embedding methods have been shown to help improve multi-
label prediction accuracies significantly. In this work, we
follow the framework of (Bhatia et al. 2015), where g is a
linear transformation, but h is non-linear, and in particular,
based on k-nearest neighbors in the embedded feature space.

In SLEEC, the function g : R% — R® is given by g(x) =
Vx where V € R%*?, The function h : R? — R is defined
as:

1
h(z; {zi7yi}?_1) =N Yis (1)
2

where z; = g(x;) and NV}, denotes the k—nearest neighbor

training instances of z in the embedded space. Our algorithm

for predicting the labels of a new instance is identical to that

of SLEEC and is presented for convenience in Algorithm 1.

Note that, for speeding up predictions, the algorithm relies

on clustering the training instances X;; for each cluster of

instances)7, a different linear embedding g, denoted by
V7, is learnt.

Algorithm 1 Prediction Algorithm

Input: Test point: X, no. of nearest neighbors k, no. of
desired labels p.

1. Q. : partition closest to x.

2.2+ V'x

3. N < k nearest neighbors of z in the embedded in-
stances of ().

4.s =h(z;{z;,y,}icq.) where h is defined in 1

return top p scoring labels according to s.

In this work, we focus on learning algorithms for
the functions g and h, inspired by their successes in
natural language processing in the context of learn-
ing distributional semantics (Mikolov et al. 2013;
Levy and Goldberg 2014). In particular, we use tech-
niques for inferring word-vector embeddings for learning
the function h using a) training label vectors y,, and b)
label-label correlations C' € REXL,

Word embeddings are desired in natural language process-
ing in order to understand semantic relationships between
words, also classifying text documents, etc. Given a text cor-
pus consisting of a collection of documents, the goal is to
embed each word in some space such that words appearing
in similar contexts (i.e. adjacent words in documents) should
be closer in the space, than those that do not. In particular,
we use the word2vec embedding approach (Mikolov et al.
2013) to learn an embedding of instances, using their label
vectors y,,¥s, - - -, ¥, SLEEC also uses nearest neighbors

in the space of label vectors y, in order to learn the embed-
dings. However, we show in experiments that word2vec
based embeddings are richer and help improve the prediction
performance significantly, especially when there is a lot of
missing labels. In the subsequent section, we discuss our al-
gorithms for learning the embeddings and the training phase
of multi-label learning.

Learning Instance and Label Embeddings

There are multiple algorithms in the literature for learning
word embeddings (Mikolov et al. 2013; Pennington, Socher,
and Manning 2014). In this work, we use the Skip Gram
Negative Sampling (SGNS) technique, for two reasons a) it
is shown to be competitive in natural language processing
tasks, and more importantly, b) it presents a unique advantage
in terms of scalability, which we will address shortly after
discussing the technique.

Skip Gram Negative Sampling. In SGNS, the goal is to
learn an embedding z € R? for each word w in the vocabu-
lary. To do so, words are considered in the contexts in which
they occur; context c is typically defined as a fixed size win-
dow of words around an occurrence of the word. The goal is
to learn z such that the words in similar contexts are closer to
each other in the embedded space. Let w’ € ¢ denote a word
in the context c of word w. Then, the likelihood of observing
the pair (w, w’) in the data is modeled as a sigmoid of their
inner product similarity:

P(Observing (w, w')) = 0({Zw, 2w) =
1 2)
1+ exp((—Zw, Zw’>)

To promote dissimilar words to be further apart, negative sam-
pling is used, wherein randomly sampled negative examples
(w,w") are used. Overall objective favors z,,, Z,, Z,, that
maximize the log likelihood of observing (w.w’), for w’ € ¢,
and the log likelihood of P(not observing (w,w”)) =1 —
P(Observing (w,w’)) for randomly sampled negative in-
stances. Typically, n_ negative examples are sampled per
observed example, and the resulting SGNS objective is given
by:

arginaxz (Z log (O’(<Zw,zw/>))+

w’:(w’,w)

=S o (-)).

w!’

3

where #w denotes the total number of words in the vocabu-
lary, and the negative instances are sampled uniformly over
the vocabulary.

Embedding label vectors: We now show how an SGNS-
like approach can be designed for multi-label learning. A
simple model is to treat each instance as a "word”; define
the “context” as k-nearest neighbors of a given instance
in the space formed by the training label vectors y,, with
cosine similarity as the metric. We then arrive at an objective
identical to (3) for learning embeddings z1,zo, . . ., z, for
instances X1, Xo, . . . , X, respectively:

argmaXZ(Z 10g(0(<Z¢,Zj>))+

Z1,22,..., L " SN R ()
n_
TZIOg (U(_<Zi7zj/>))>7
j/

Note that Ny (y;) denotes the k-nearest neighborhood of

it"f instance in the space of label vectors * or instance em-
bedding. After learning label embeddings z;, we can learn
the function g : X — z by regressing x onto z, as in SLEEC.
Solving (4) for z; using standard word2vec implementa-
tions can be computationally expensive, as it requires training
multiple-layer neural networks. Fortunately, the learning can
be significantly speed up using the key observation by (Levy
and Goldberg 2014).
Levy et. al. (Levy and Goldberg 2014) showed that solv-
ing SGNS objective is equivalent to matrix factorization of
the shifted positive point-wise mutual information (SPPMI)
matrix defined as follows. Let M;; = (y;,y;)-

M;j | M]|)
2 Mgy * 2ok M)
SPPMI;; (M) = max(PMI;; (M) —log(k),0) (5)
Here, PMI is the point-wise mutual information matrix of M
and | M| denotes the sum of all elements in M. Solving the

problem (4) reduces to factorizing the shifted PPMI matrix
M.

“

PMI;; (M) = log (

Finally, we use ADMM (Boyd et al. 2011) to learn the
regressors V' over the embedding space formed by z;. Overall
training algorithm is presented in 2.

Algorithm 2 Learning embeddings via SPPMI factoriza-
tion (EXMLDS1).
Input. Training data (x;,y;),s = 1,2,...,n.
1. Compute M := SPPMI(M) in (5), where M;; =
(¥Yir¥;)- N
2. Let U, S,V = svd(M), and preserve top d’ singular
values and singular vectors.
3. Compute the embedding matrix Z = US%?, where
7 € R4 where it" row gives z;
4. Learn V s.t. XVT = Z using ADMM (Boyd et al.
2011), where X is the matrix with x; as rows.
return V, Z

We refer to Algorithm 2 based on fast PPMI matrix factor-
ization for learning label vector embeddings as EXMLDSI.
We can also optimize the objective 4 using a neural
network model (Mikolov et al. 2013); we refer to this
word2vec method for learning embeddings in Algorithm 2
as EXMLDS2.

% Alternately, one can consider the neighborhood in the
d-dimensional feature space x;; however, we perform clustering
in this space for speed up, and therefore the label vectors are likely
to preserve more discriminative information within clusters.

Using label correlations: In various practical natural lan-
guage processing applications, superior performance is ob-
tained using joint models for learning embeddings of text doc-
uments as well as individual words together in a corpus (Dai,
Olah, and Le 2015). For example, in PV-DBoW (Dai, Olah,
and Le 2015), the objective while learning embeddings is
to maximize similarity between embedded documents and
words that compose the documents. Negative sampling is also
included, where the objective is to minimize the similarity
between the document embeddings and the embeddings of
high frequency words. In multi-label learning, we want to
learn the embeddings of labels as well as instances jointly.
Here, we think of labels as individual words, whereas label
vectors (or instances with the corresponding label vectors) as
paragraphs or documents. In many real world problems, we
may also have auxiliary label correlation information, such
as label-label co-occurrence. We can easily incorporate such
information in the joint modeling approach outlined above.
To this end, we propose the following objective that incor-
porates information from both label vectors as well as label
correlations matrix:

argmax O, z
Z,Z

= 1O + p20% + p30®(, o, (6)

@;:2(S log(o((22,)))

i=1 “j:NR(C(iy))

*nf Zlog (a(—<ii,ij/>)))’

(%

=1 NN (M(5,0))

@)

log (o((2i,2;)))
' (8)
+% Zlog (a(—(liylj/m)’

L

s 5 32 s

_|_nf Z log (o/(—(z, ij’>))>

Here, z;,7 = 1,2,...,n denote embeddings of instances
while z;, ¢ = 1,2,...,L denote embeddings of labels.
Ni(M(i,:)) denotes the k-nearest neighborhood of 4"
instance in the space of label vectors. Ny (C(z,:)) denotes
the k-nearest neighborhood of i'" label in the space of
labels. Here, M defines instance-instance correlation i.e.
M;; = (y;,y;) and C is the label-label correlation matrix.
Clearly, (8) above is identical to (4). @% tries to embed labels
Z; in a vector space, where correlated labels are closer; @f
tries to embed instances z; in such a vector space, where
correlated instances are closer; and finally, (O)?z,i} tries to
embed labels and instances in a common space where labels
occurring in the 7*" instance are close to embedded instance.

&)

Overall the combined objective Oy, z) promotes learning
a common embedding space where correlated labels,

correlated instances and observed labels for a given instance
occur closely. Here uq,10 and pg are hyper-parameters
to weight the contributions from each type of correlation.

n! negative examples are sampled per observed label, n?

negative examples are sampled per observed instance in
context of labels and n® negative examples are sampled
per observed instance in context of instances. Hence, the
proposed objective efficiently utilizes label-label correlations
to help improve embedding and, importantly, to cope with
missing labels. The complete training procedure using
SPPMI factorization is presented in Algorithm 3. Note that
we can use the same arguments given by (Levy and Goldberg
2014) to show that the proposed combined objective (6) is
solved by SPPMI factorization of the joint matrix A given
in Step 1 of Algorithm 3.

Algorithm 3 Learning joint label and instance embeddings
via SPPMI factorization (EXMLDS3).
Input. Training data (x;,y,),¢ = 1,2,...,n and C (label-
label correlation matrix) and objective weighting (7,160
and 3. R
1. Compute A := SPPMI(A) in (5); write

A— pe M psY
psY T C)

M;j = (y;,y;), Y: label matrix with y; as rows.

-~

2. Let U, S,V = svd(A), and preserve top d’ singular
values and singular vectors.
3. Compute the embedding matrix Z = U S%-5; write

(4
2= (%)

where rows of Z; € R"*¢’ give instance embedding and
rows of Z, € RL*d give label embedding.

4. Learn V s.t. XVT = 7, using ADMM, where X is the
matrix with x; as rows.

return V, Z

Algorithm 4 Prediction Algorithm with Label Correlations
(EXMLDS3 prediction).
Input: Test point: X, no. of nearest neighbors £, no. of
desired labels p, V', embeddings Z; and Z5.
1. Use Algorithm 1 (Step 3) with input Z1, k, p to get score
S1.
3. Get score s9 = ZyVx
4. Get final score s = Hzii\l + Hziz\l
return top p scoring labels according to s.

At test time, given a new data point we could use the
Algorithm 1 to get top p labels. Alternately, we propose to
use Algorithm 4 that also incorporates similarity with label
embeddings Z, along with Z; during prediction, especially
when there are very few training labels to learn from. In

practice, we find this prediction approach useful. Note the
z; corresponds to the it" row of Z, and Z; corresponds to
the j** row of Z,. We refer the Algorithm 3 based on the
combined learning objective (6) as EXMLDS3.

Joint Embedding and Regression: We extended the SGNS
objective to directly learn the regression matrix (V') through
gradient descent, resulting in EXMLDS4. Compared to pre-
vious approaches, EXMLDS4 jointly learn the embeddings
and regressors, by directly learning the matrix (V') in one
step. For detail see Algorithm 5. Let,

Ky = Zi Zj \ _ (z]'z;)
lzall llzs 1" flzi]l]
z; = Vx;, where V € R% >4
Objective 4 for i*" instance at step t:

@,‘ = Z log (O’(KU)) + % Zlog (U(—Kij/»,

JN&(y;)
(10)
Gradient of objective 4 w.r.t to V i.e. Vi O is :
Vl/@i = Z O(—Kij)VVKij
Zlik(yl) (11)
- > o(Kij)VyKij
j/
where Vy, K;; is given by,
VVKZ']- = —abSCZi(Xi)T — abc?’zj (Xj)T (12)
+bc(ziij + 2%})
where a = zszj,b = HTlﬂ’ c= ”zlj”

Joint Learning in SLEEC SLEEC paper Section 2.1 (Op-
timization) stated that the joint objective function (Equa-
tion 3) is non-convex as well as non-differentiable and ex-
tremely challenging to optimize. Even in the disjoint simpli-
fied problem (Equation 4) is a low-rank matrix completion
problem and is known to be NP-hard. The embedding learn-
ing (Equation 5) is non-smooth due to L1 penalty constraint.
In EXMLDS4our SGNS objective is non-convex but easily
differentiable, we don’t have any L1 penalty constraint.

Experiments

We conduct experiments on commonly used benchmark
datasets from the extreme multi-label classification repos-
itory provided by the authors of (Prabhu and Varma 2014;
Bhatia et al. 2015) 3; these datasets are pre-processed, and
have prescribed train-test splits. We use the standard, prac-
tically relevant, precision at k (denoted by Prec@k) as the
evaluation metric of the prediction performance. Prec@Fk
denotes the number of correct labels in the top %k predic-
tions. We run our code and all other baselines on a Linux
machine with 40 cores and 128 GB RAM. We implemented

3 Datasets and Benchmark :https://bit.ly/2IDtQbS

Algorithm 5 Learning joint instance embeddings and regres-
sion via gradient decent (ExXMLDS4).
Input. Training data (x;,y;),% = 1,2,...,n. no. of near-
est neighbors k, Gaussian initialize regression matrix V'
while ¢t =i # n do
1. Compute O; (10) and gradient VQ; (11);
2. Perform SGD update for V,

V&V +nVy0Oy
3. Update 7 using Adam.
end while
return V

our prediction Algorithms 1 and 4 in MATLAB. Learning Al-
gorithms 2 and 3 are implemented partly in Python and partly
in MATLAB. Source code will be made available to public
later. We evaluate three models (a) EXMLDSI1 i.e. Algorithm
2 based on fast PPMI matrix factorization for learning label
embeddings as described earlier, (b) EXMLDS?2 based on
optimizing the objective (4) as described earlier, using neural
network (Mikolov et al. 2013) (c) EXMLDS3 i.e. Algorithm
3 based on combined objective (6).

Compared methods We compare our algorithms with the
following baselines. 1. SLEEC (Bhatia et al. 2015), which
was shown to outperform all other embedding baselines on
the benchmark datasets. 2. LEML (Yu et al. 2014), an em-
bedding based method. This method also facilitates incorpo-
rating label information (though not proposed in the origi-
nal paper); we use the code given by the authors of LEML
which uses item. features*. We refer to the latter method that
uses label correlations as LEML-IMC. 3. FASTXML (Prabhu
and Varma 2014), a tree-based method. 4. PD-SPARSE (Yen
et al. 2016), recently proposed embedding based method.
5. PPDSPARSE (Yen et al. 2017), parallel, and distributed
fast version of PD-SPARSE (Yen et al. 2016). 6. PFAS-
TREXML (Jain, Prabhu, and Varma 2016) is an extension of
FASTXML,; it was shown to outperform all other tree-based
baselines on benchmark datasets. 7. DISMEC (Babbar and
Scholkopf 2017) is recently proposed scalable implementa-
tion of the ONE-VS-ALL method. 8. DXML (Zhang et al.
2017) is a recent deep learning solution for multi-label learn-
ing. 9. XML-CNN (Liu et al. 2017) is a recent deep learning
solution for multi-label learning, specifically for text classi-
fication. 10 . ANNEXML (Tagami 2017a) is recent learning
solution for multi-label learning, which uses DSSM (Yih et al.
2011) as objective. 11. PLT (Jasinska et al. 2016) is recent is
a tree-based classifier that directly maximizes the F-measure
12. ONE-Vs-ALL (Rifkin and Klautau 2004) is traditional
one vs all multi-label classifier. We report all baseline results
from the extreme classification repository , where they have
been curated; note that all the baseline use the same train-test
split for benchmarking.

4 LEML IMC: https://goo.gl/jdGbDP1 5> Baseline:

https://bit.1ly/2IDtQbs

Hyperparameters. We use the same embedding dimen-
sionality, preserve the same number of nearest neighbors for
learning embeddings as well as at prediction time, and the
same number of data partitions used in SLEEC (Bhatia et
al. 2015) for our method EXMLDS1and EXMLDS?2. For
small datasets, we fix negative sample size to 15 and number
of iterations to 35 during neural network training, tuned
based on a separate validation set. For large datasets, we fix
negative sample size to 2 and number of iterations to 5, tuned
on a validation set. In EXMLDS3, the parameters (negative
sampling) are set identical to EXMLDSI1. For baselines,
we either report results from the respective publications or
used the best hyper-parameters reported by the authors in
our experiments, as needed.

Performance evaluation. The performance of the
compared methods are reported in Table 2. Performances
of the proposed methods EXMLDS1 and EXMLDS?2 are
found to be similar in our experiments, as they optimize
the same objective 4; so we include only the results of
EXMLDSI1 in the Table. We see that the proposed methods
achieve competitive prediction performance among the
state-of-the-art embedding and tree-based approaches. We
obtain slightly poor performance than SLEEC on some
datasets because we used unweighted SVD to factorize the
PPMI matrix instead of a weighted matrix factorization as
suggested by (Levy and Goldberg 2014) to obtain embedding
from PPMI matrix. We can further improve our performance
by using a weighted SVD algorithm, however it might
increase training time of algorithm significantly.

Training time. Objective 4 can be trained using a neural
network, as described in (Mikolov et al. 2013). For training
the neural network model, we give as input the k-nearest
neighbor instance pairs for each training instance %, where the
neighborhood is computed in the space of the label vectors
y;- We use the Google word2vec code® for training. We
parallelize the training on 40 cores Linux machine for speed-
up. Recall that we call this method EXMLDS2. We compare
the training time with our method EXMLDS 1, which uses a
fast matrix factorization approach for learning embeddings.
Algorithm 2 involves a single SVD as opposed to iterative
SVP used by SLEEC and therefore it is significantly faster. We
present training time measurements in Table 1. As anticipated,
we observe that EXMLDS?2 which uses neural networks is
slower than EXMLDS1 (with 40 cores). Also, among the
smaller datasets, EXMLDS1 trains 14x faster compared to
SLEECon Bibtex dataset. In the large dataset, Delicious-200K,
EXMLDS|1 trains 5x faster than SLEEC.

Table 1: Comparing training times (in seconds) of different

methods
Method Bibtex Deli Eurlex Media Deli
- - cious mill 200K
ExXMLDSI1 23 259 580.9 1200 1937
EXMLDS2 143.19 781.94 880.64 12000 13000
SLEEC 313 1351 4660 8912 10000

® https://goo.gl/D8aEgF

Coping with missing labels. In many real-world scenar-
ios, data is plagued with lots of missing labels. A desirable
property of multi-label learning methods is to cope with miss-
ing labels, and yield good prediction performance with very
few training labels. In the dearth of training labels, auxiliary
information such as label correlations can come in handy.
Our method EXMLDS3 can also learn from additional in-
formation. The benchmark datasets, however, do not come
with auxiliary information. To simulate this setting, we hide
80% non-zero entries of the training label matrix, and reveal
the 20% training labels to learning algorithms. As a proxy
for label correlations matrix C', we simply use the label-label
co-occurrence from the 100% training data, i.e. C = YTy
where Y denotes the full training matrix. We give higher
weight 1 to O during training in Algorithm 3. For predic-
tion, We use Algorithm 4 which takes missing labels into
account. We compare the performance of EXMLDS3with
SLEEC, LEML and LEML-IMCin Table 4. Note that while
SLEEC and LEML methods do not incorporate such auxiliary
information, LEML-IMC does. In particular, we use the spec-
tral embedding based features i.e. SVD of YY 7 and take
all the singular vectors corresponding to non-zero singular
values as label features. It can be observed that on all three
datasets, EXMLDS3 performs significantly better by huge
margins. In particular, the lift over LEML-IMC is significant,
even though both the methods use the same information. This
serves to demonstrate the strength of our approach.

Joint Learning: Our method EXMLDS4 can jointly
learn the embedding and regression. To implement joint
learning, we modified the existing code of state-of-the-art
embedding based extreme classification approach AnnexML
(Tagami 2017a) 7, by replacing the DSSM ® training objec-
tive by word2vec objective, while keeping cosine simi-
larity, partitioning algorithm, and approximate nearest pre-
diction algorithm same. For efficient training of rare label,
we keep the coefficient ratio of negative to positive sam-
ples as 20:1, while training for all datasets. We used the
same hyper-parameters i.e. embedding size as 50, number
of learner for each cluster as 15, number of nearest neigh-
bor as 10, number of embedding and partitioning iteration
both 100, gamma as 1, label normalization as true, num-
ber of threads as 32. We obtain state-of-the-art result i.e.
similar or better in comparison to DISMEC (Babbar and
Scholkopf 2017), PPDSPARSE (Yen et al. 2017) and AN-
NEXML (Tagami 2017b) and SLEEC (Bhatia et al. 2015) on
all large datasets, see table 3 for details results. Our training
and prediction time for EXMLDS4 was similar to that of
ANNEXML.

Analysis and Discussion

Although SLEEC performs slightly better on some datasets,
our EXMLDS 1 model is much faster than SLEEC in training
on large datasets as shown in Table 1. The performance of
our model EXMLDS3 in Table 4 when a significant fraction
of labels missing is considerably better than SLEEC and other

7 Code: https://bit.ly/2wB4nLu 8 DSSM

https://bit.ly/2Ih8duw

Table 2: Comparing prediction performance of different methods(— mean unavailable results). Note that although SLEEC
performs slightly better, our model is much faster as shown in the results in Table 1. Also note the performance of our model in
Table 4 when a significant fraction of labels are missing is considerably better than SLEEC

Dataset Prec@k Propose Embedding Based Sparsity Tree Based XML Others
EXMLDS1 | DXML SLEEC LEML | PD-SPARSE | PFASTRE FAST | 1-vs-All DISMEC
P@1 63.38 63.69 6529 6254 61.29 63.46 63.42 62.62 -
Bibtex P@3 38.00 37.63 39.60 3841 35.82 39.22 39.23 39.09 -
P@5 27.64 27.71 28.63 28.21 25.74 29.14 28.86 28.79 -
P@1 67.94 67.57 68.10 65.67 51.82 67.13 69.61 65.01 -
Delicious P@3 61.35 61.15 61.78 60.55 44.18 62.33 64.12 58.88 -
P@5 56.3 56.7 5734 56.08 38.95 58.62 59.27 53.28 -
P@1 77.55 77.13 79.52 63.40 76.43 7545 71.36 79.89 82.40
Eurlex P@3 64.18 64.21 64.27 50.35 60.37 62.70 59.90 66.01 68.50
P@5 52.51 52.31 5232 41.28 49.72 52.51 50.39 53.80 57.70
P@1 87.49 88.71 87.37 84.01 81.86 83.98 84.22 83.57 -
Mediamill P@3 72.62 71.65 72.6 67.20 62.52 67.37 67.33 65.60 -
P@5 58.46 56.81 58.39 52.80 45.11 53.02 53.04 | 48.57 -
P@1 46.07 44.13 47.50 40.73 34.37 41.72 43.07 - 4550
Delicious-200K P@3 41.15 39.88 42.00 37.71 29.48 37.83 38.66 - 38.70
P@5 38.57 37.20 39.20 3584 27.04 35.58 36.19 - 35.50

Table 3: Comparing prediction performance of state-of-the-art embedding based methods (— mean unavailable results) on large
dataset with joint learning

Dataset Prec@k Proposed Embedding Based Sparsity Based
EXMLDS4 | ANNEXML SLEEC XML-CNN | PD-SPARSE PPDSPARSE
P@l 93.05 93.55 90.53 95.06 89.31 92.72
AmazonCat-13K P@3 79.18 78.38 76.33 79.86 74.03 78.14
P@5 64.54 63.32 61.52 63.91 60.11 63.41
P@l 86.82 86.50 85.88 84.06 77.71 -
WikilOK-31K P@3 74.30 74.28 72.98 73.96 65.73 -
P@5 63.68 64.19 62.70 64.11 55.39 -
P@l 47.70 46.66 47.85 - 34.37 45.05
Delicious-200K P@3 41.22 40.79 42.21 - 29.48 38.34
P@5 37.98 37.64 39.43 - 27.04 34.90
P@1 62.15 63.36 54.83 - 61.26 64.13
WikiLSHTC-325K P@3 39.58 40.66 3342 - 39.48 42.10
P@5 29.10 29.79 23.85 - 28.79 31.14
P@1 62.27 63.86 58.39 59.85 - -
Wikipedia-500K P@3 41.43 42.69 37.88 39.28 - -
P@5 31.42 32.37 28.21 29.31 - -
P@1 41.47 42.08 35.05 - 44.70 43.04
Amazon-670K P@3 36.35 36.65 31.25 - 39.70 38.24
P@5 32.43 32.76 28.56 - 36.10 34.94

label embedding based baselines such as LEMLand LEML-
Table 4: Evaluating competitive methods in the setting where IMC(uses auxiliary information). Without joint objective our
80% of the training labels are hidden models EXMLDS1 and EXMLDS?2 have poor performance
on few large datasets. However, with the joint objective learn-
ing our model EXMLDS4 obtained comparable and most
closest performance to the best known state-of-the-art perfor-

Data P@k Exmlds3 SLEEC LEML LEML-IMC
P@l1 48.51 30.5 35.98 41.23
Bibtex P@3 28.43 14.9 21.02 25.25

P@5 20.7 0381 15.50 18.56 mance obtain by different multi-label baseline on different
P@1 6028 514 2622 3994 datasets. In Table 3, it should be noted that both EXMLDS4

Eurlex P@3 44.87 37.64 22.94 32.66 andANNEXML is closest to the best performance and out-
P@5 35.31 2062 19.02 26.54 perform most of the other compared baselines on all dataset
P@1 81.67 41.8 64.83 73.68 simultaneously.

revlv2 P@3 52.82 17.48 42.56 48.56
P@5 37.74 10.63 31.68 34.82

Conclusions and Future Work

The this paper we establish a connection between
word2vec in NLP with multi-label learning in XML. The
benefit leap by the connection is efficient and fast training,
easy handling of the missing label using external auxiliary
label-label correlation information and easily perform joint
embedding learning and regression. Our proposed objective
can be optimized efficiently by SPPMI matrix factorization
and can also incorporates side information, which is effective
in handling missing labels. Through comprehensive experi-
ments, we showed that the proposed method is competitive
compared to state-of-the-art multi-label learning methods in
terms of prediction accuracies. Joint training model learning
learn the regression V' which has a large number of entries d
x L, as L is the number of labels (millions). One can use the
sparsity in X (we used V' X), to design better training over
the joint model.

References

Babbar, R., and Scholkopf, B. 2017. Dismec: distributed
sparse machines for extreme multi-label classification. In
Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining, 721-729. ACM.

Bhatia, K.; Jain, H.; Kar, P.; Varma, M.; and Jain, P. 2015.
Sparse local embeddings for extreme multi-label classifica-
tion. In NIPS, 730-738.

Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; and Eckstein, J.
2011. Distributed optimization and statistical learning via
the alternating direction method of multipliers. Foundations
and Trends®) in Machine Learning 3(1):1-122.

Dai, A. M.; Olah, C.; and Le, Q. V. 2015. Docu-
ment embedding with paragraph vectors. arXiv preprint
arXiv:1507.07998.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Comput. 9(8):1735-1780.

Jain, L. C., and Medsker, L. R. 1999. Recurrent Neural
Networks: Design and Applications. Boca Raton, FL, USA:
CRC Press, Inc., 1st edition.

Jain, H.; Prabhu, Y.; and Varma, M. 2016. Extreme multi-
label loss functions for recommendation, tagging, ranking
& other missing label applications. In 22nd ACM SIGKDD,
935-944. ACM.

Jasinska, K.; Dembczynski, K.; Busa-Fekete, R.;
Pfannschmidt, K.; Klerx, T.; and Hullermeier, E. 2016.
Extreme f-measure maximization using sparse probability
estimates. In ICML, 1435-1444.

Kiros, R.; Zhu, Y.; Salakhutdinov, R. R.; Zemel, R.; Urtasun,
R.; Torralba, A.; and Fidler, S. 2015. Skip-thought vectors.
In NIPS, 3294-3302.

Le, Q. V., and Mikolov, T. 2014. Distributed representations
of sentences and documents. In /ICML, volume 14, 1188—
1196.

Levy, O., and Goldberg, Y. 2014. Neural word embedding as
implicit matrix factorization. In NIPS, 2177-2185.

Liu, J.; Chang, W.-C.; Wu, Y.; and Yang, Y. 2017. Deep
learning for extreme multi-label text classification. In 40th

International ACM SIGIR Conference, SIGIR *17, 115-124.
New York, NY, USA: ACM.

Mikolov, T.; Sutskever, 1.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In NIPS, 3111-3119.

Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In EMNLP, vol-
ume 14, 1532-1543.

Prabhu, Y., and Varma, M. 2014. Fastxml: A fast, accurate
and stable tree-classifier for extreme multi-label learning. In
Proceedings of the 20th ACM SIGKDD, 263-272. ACM.

Rifkin, R., and Klautau, A. 2004. In defense of one-vs-
all classification. Journal of machine learning research
5(Jan):101-141.

Tagami, Y. 2017a. Annexml: Approximate nearest neighbor
search for extreme multi-label classification. In Proceedings
of the 23rd ACM SIGKDD, KDD °17, 455-464. New York,
NY, USA: ACM.

Tagami, Y. 2017b. Learning extreme multi-label tree-
classifier via nearest neighbor graph partitioning. In 26th
International Conference on World Wide Web Companion,
WWW ’17 Companion, 845-846.

Weston, J.; Bengio, S.; and Usunier, N. 2010. Large scale
image annotation: learning to rank with joint word-image
embeddings. Machine learning 81(1):21-35.

Yen, 1. E.-H.; Huang, X.; Ravikumar, P.; Zhong, K.; and
Dhillon, I. 2016. Pd-sparse: A primal and dual sparse ap-
proach to extreme multiclass and multilabel classification. In
ICML, 3069-3077.

Yen, L. E.; Huang, X.; Dai, W.; Ravikumar, P.; Dhillon, I.;
and Xing, E. 2017. Ppdsparse: A parallel primal-dual sparse
method for extreme classification. In Proceedings of the 23rd
ACM SIGKDD, KDD ’17, 545-553. New York, NY, USA:
ACM.

Yih, W.-t.; Toutanova, K.; Platt, J. C.; and Meek, C. 2011.
Learning discriminative projections for text similarity mea-
sures. In Fifteenth Conference on Computational Natural
Language Learning, 247-256. Association for Computa-
tional Linguistics.

Yu, H.-F;; Jain, P.; Kar, P.; and Dhillon, I. 2014. Large-scale
multi-label learning with missing labels. In ICML, 593-601.
Zhang, W.; Wang, L.; Yan, J.; Wang, X.; and Zha, H.
2017. Deep extreme multi-label learning. arXiv preprint
arXiv:1704.03718.

Appendix: Distributional Semantics meets
Multi-Label Learning

SGNS as Implicit SPPMI factorization
The SGNS (Mikolov et al. 2013) objective is as follows:

M
0; = Y log(a(Kij)) + Y Expp [log(o(—Kix))]
JES; k~Pp
(13)
where, Pp = (#;)[0)'7‘), D is collection of all word-context
pairs and K;; represent dot-product similarity between the
embeddings of a given word (i) and context (j).

Here, #Fk represent total number of word-context pairs
with context (k).

i
O gy =log(0(Kij)) + > Brmppllog(o(—Kix))]
k~Pp
(14)
k 0.75
Bipyllog(o (K] = 3 T tog(o(~ k)
orp T
(15)
£0.75
Biry logo(~ K] = 2= tog(o(-16,)
£)0-75 (16)
+ Z %log(a(—lﬁk))
kim P &kt]
Therefore,
£0.75
By llog(o(—)] = P2 hog(o(-) (17
M (44)0-75
Oyi 5y = log(o(Kij)) + |S|(#;)D log(o(—Kij))
(18)
Let vK; = X, then
M #] 0.75
V.0yijy =o(—z) — |S|(#)DU($) (19)
equating V. J(; ;1 to 0, we get :
e* — —1]e*— ! =0
M (#4)°0-7° M (#5)0-75
IS| #D IS| #D
(20)

If we define y = e” , this equation becomes a quadratic
equation of y, which has two solutions, y =- 1 (which is
invalid given the definition of y) and

1 #D x |S|

Y= @)= = N0.75 (21)
M M * (#7)

Substituting y with e* and x with K;; reveals :
#D * |S|
M s (#5)07

Here |S| = #(4,j) and M = p#(i) i.e. p proportion of
total number of times label vector (i) appear with others.

sy = og (AGD)

(i (#j>0-75) ~loglu) @3)

Kij = log(P(i7j).)) —log(p) (24)

PP
Here P(i,j),P(i) and P(j) represent probability of co-

occurrences of {i,j} , occurrence of i and occurrence of

j respectively,

Therefore,

Kij = PMli; —log(u) = log(P(ilf)) — log() ~ (25)

Note that PMIT is inconsistent, therefore we used the
sparse and consistent positive PMI (PPMI) metric, in which
all negative values and nan are replaced by 0:

PPM'U = maX(PMIl], 0) (26)

Here, PMI is point wise mutual information and PPMI is
positive point wise mutual information. Similarity of two
{1, j} is more influenced by the positive neighbor they share
than by the negative neighbor they share as uninformative i.e.
0 value. Hence, SGNS objective can be cast into a weighted
matrix factorization problem, seeking the optimal lower
d-dimensional factorization of the matrix SPPMI under a
metric which pays more for deviations on frequent #(i,)
pairs than deviations on infrequent ones.

Using a similar derivation, it can be shown that noise-
contrastive estimation (NCE) which is alternative to (SGNS)
can be cast as factorization of (shifted) log-conditional-
probability matrix

#(1,J))
K;; =log (: —log 27
J (#]) (:u)
Gradient Computation
Gradient of objective 4 w.r.tto V i.e. Vi O is :

vV®i: Z a(—K,»j)VVK,»j

(28)
——) o(Kij)VvEKij

Table 5: Dataset Statistics

Dataset Feature Label Train Test

Bibtex (?; Prabhu and Varma 2014) 1836 159 4880 2515

Delicious (?; Prabhu and Varma 2014) 500 983 12920 3185

EURLex-4K (?; Prabhu and Varma 2014) 5000 3993 15539 3809

rcv1v2 (?; Prabhu and Varma 2014) 47236 101 3000 3000
Delicious-200K (?; Bhatia et al. 2015) 782585 205443 196606 100095
MediaMill (?; Bhatia et al. 2015) 120 101 30993 12914

Wikil0-31K (Bhatia et al. 2015; ?) 101938 30938 14146 6616
AmazonCat-13K (?) 203882 13330 1186239 306782
WikiLSHTC-325 (Prabhu and Varma 2014; Bhatia et al. 2015) 1617899 325056 1778351 587084
Wikipedia-5S00K 2381304 501070 1813391 783743
Amazon-670K (?; Bhatia et al. 2015) 135909 670091 490449 153025

VV<ZiZj> = VV(VXi)Zj + Vv(VXj)ZZ‘

(29)
= (zx]) + (z;x]) = V((x:x] +x;x]))
1 -t _1 =3
VVW sziziT 2 = TZiZZ 2 sziziT
z;
L (30)
77T 2 T
= Z,Z; ° X;Z;
1 -t _1 =3
Vv = szjo 2 —szT 2 szjo
;[! 2 7 !
R (31)
- T2 T
= TZJ'Z]- XjZ‘7
Let,
1 1
T
a=12;%2;,b= = —— (32)
g 12| ;[
Thus, we have,
Vy K = —abdcz;(x;)T — abc’z;(x;)T
Vg () J(J) (33)

+bc(zix;‘-r + 2%})

Similarity to graph embedding:
Graph embedding algorithm Grarep(?) and DNGR(?), which
aim to learn embeddings for each node of graph are based
on similar idea of weighted matrix factorization of shifted
PPMImatrix of input adjacency matrix. These node embed-
ding outperforms has outperform previous state-of-the-art in
the task of community classification/detection.

Dataset Statistics:
We have provided the details datasets statistics in Table 5.

