
Effective Dimensionality Reduction for Word Embeddings
Vikas Raunak † Vivek Gupta ‡ Florian Metze †

†Carnegie Mellon University ‡University of Utah

Overview

•We present a dimensionality reduction
algorithm to construct lower
dimensional word embeddings by
exploiting a geometric property of the
embedding space.

•Empirical evaluations on several
benchmarks (Word Similarity,
Sentence Classification, Semantic
Similarity) show that our algorithm
efficiently reduces the embedding size
upto 50% while obtaining similar or
better performance than original
embeddings.

Introduction

•Pre-trained word embeddings are used in
several downstream applications as well
as for constructing representations for
sentences, paragraphs and documents.

•A prohibitive issue related with word
embeddings is their size. For example,
loading a word embedding matrix of
2.5M tokens takes up to 6 GB memory
(for 300-dimensional vectors, on a 64-bit
system).

•Reducing the size of word embeddings
through dimensionality reduction can
improve their utility in memory
constrained devices, benefiting several
real-world applications.

•Word embeddings (across all
representations such as Glove, word2vec
etc.) have a large mean vector and most
of their energy (after subtracting the
mean vector) is located in a subspace of
about 8 dimensions [1].

•The Post-Processing algorithm in [1]
improves the embeddings by subtracting
the (large) mean vector and by projecting
the embeddings away from the common
dominant directions.

• In this work, we present a novel
algorithm that effectively combines PCA
based dimensionality reduction with the
post-processing algorithm in [1], to
construct word embeddings of lower
dimensions.

Analysis

A simple analysis of word embeddings (in
terms of fraction of variance explained by
the top principal components) is shown be-
low:

Figure 1: Comparison of the Original and Post-
Processed Glove Embeddings (300-Dimensional) in
terms of fraction of variance explained by top 20 Prin-
cipal Components.

Figure 2: Comparison of the Post-Processing + PCA-
150D Baseline and Further Post-Processed Glove Em-
beddings (150-Dimensional) in terms of fraction of
variance explained by top 20 Principal Components.

Algorithm

The Post-Processing Algorithm (PPA)
Input: Word Embedding Matrix X, Threshold Parameter D.

1. Subtract the Mean:
X = X - mean(X).

2. Compute the PCA Components:
ui = PCA(X), where i = 1,2,...,d.

3. Eliminate the Top D Components: ∀ v in X:
v = v −

∑D
i=1(uT

i · v)ui

Output: Post-Processed Word Embedding Matrix X.

end

Algorithm

The Dimensionality Reduction Algorithm
Input: Word Embedding Matrix X, New Dimension N, Threshold
Parameter D.

1. Apply the Post-Processing Algorithm:
X = PPA(X, D).

2. Transform X Using PCA:
X = PCA(X).

2. Apply the Post-Processing Algorithm:
X = PPA(X, D).

Output: Word Embedding Matrix of Reduced Dimension N: X.

end

Hence, our algorithm is simply to apply
post-processing on either side of a PCA
based dimensionality reduction procedure.
The first post-processing is required since
PCA should be applied on higher quality
(base) embeddings. The second
post-processing step is motivated by
observation 1 from the analysis.

Observations from the Analysis

1 The property of common dominant directions re-emerges in lower dimensional
embeddings even when PCA was applied on already post-processed
embeddings.

2 The extent to which the top principal components explain the data in the case of the
reduced embeddings is not as great as in the case of the original high dimensional
embeddings. Hence, multiple levels of post-processing at different levels of
dimensionality will yield diminishing returns as the influence of common dominant
directions decrease on the word embeddings.

Baselines: To evaluate the performance of our algorithm, we compare it against different
schemes of combining the post-processing algorithm with PCA. We consider the following
baselines: PCA: Transform word vectors using PCA, PPA+PCA: Apply the algorithm 1
(PPA) and then transform word vectors using PCA, PCA+PPA: Transform word vectors
using PCA and then apply the algorithm 1 (PPA).

Evaluation

Evaluations were done with Glove (100, 200,
300), word2vec (300) and fastText (300)
embeddings on 12 word similarity datasets
(metric is Spearman’s rank correlation co-
efficient), 9 Sentence classification datasets
and 5 Semantic Similarity (STS) Datasets.

1 Word Similarity Benchmarks 150D
embeddings obtain 2-3% better
performance than the original
embeddings. The embeddings generated
by reducing Glove-200D to 100
dimensions using our algorithm
outperform the original Glove-100D
embeddings, with an average performance
improvement of 6% across all the 12
datasets.

2 Sentence Classification Tasks 200D
embeddings obtain performance within
1% of the original embeddings (except
TREC).

3 Semantic Similarity Tasks

Figure 3: Baseline Comparison on STS 12-16 Tasks.

References

[1] Jiaqi Mu, Suma Bhat, and Pramod
Viswanath. 2017. All-but-the-top:
Simple and effective postprocessing for
word representations. arXiv preprint
arXiv:1702.01417.

https://github.com/vyraun/Half-Size


