RETRONLU: Retrieval Augmented Task Oriented **Semantic Parsing**

https://retronlu.github.io/

Vivek Gupta¹, Akshat Shrivastava², Adithya Sagar², Armen Aghajanyan², Denis Savenkov³

¹University of Utah; ²Facebook (Meta) Conversational Al²

Bloomberg

¹on academic job market ¹Bloomberg Ph.D. Fellow ¹work done as an intern

TAKEAWAY

- 1. In this work, we explore RETRONLU: retrieval based modeling approach for task-oriented semantic parsing problem.
- 2. RETRONLU makes explicit use of memory of retrieve examples of semantic parses that the model learn to adapt for other similar input utterance.
- 3. We analyse the robustness and sensitivity of RETRONLU in several dimensions as follows:
 - a. Data Efficiency
 - b. Limited Supervision
 - c. Noise Robustness
 - d. Utterance Complexity
 - e. Knowledge Efficiency

TASK ORIENTED SEMANTIC PARSING

utterance : "please add 20 minutes on the lasagna timer"

semparse (coupled) : [in:add_time_timer please add [sl:date_time 20 minutes] on the
[sl:timer_name lasagna] [sl:method_timer timer]]

TASK ORIENTED SEMANTIC PARSING

Utterance : "please add 20 minutes on the lasagna timer"

semparse (coupled) : [in:add_time_timer please add [sl:date_time 20 minutes] on the
[sl:timer_name lasagna] [sl:method_timer timer]]

semparse (decoupled) : [in:add_time_timer please add [sl:date_time 20 minutes] on the
[sl:timer_name lasagna] [sl:method_timer timer]]

TASK ORIENTED SEMANTIC PARSING

Utterance : "please add 20 minutes on the lasagna timer"

semparse (coupled) : [in:add_time_timer please add [sl:date_time 20 minutes] on the
[sl:timer_name lasagna] [sl:method_timer timer]]

semparse (decoupled) : [in:add_time_timer [sl:date_time 20 minutes] [sl:timer_name lasagna]
[sl:method_timer timer]]

Utterance: Driving directions to the Eagles game Semantic Parse: [IN:GET DIRECTIONS Driving directions to [SL:DESTINATION [IN:GET_EVENT the [SL:NAME_EVENT Eagles] [SL:CAT_EVENT game]]] **Tree Representation:** IN:GET_DIRECTIONS Structured Prediction SL:DESTINATION **Driving directions to** IN:GET_EVENT SL:NAME_EVENT SL:CAT_EVENT the Eagles game

Figure 1: An compositional query from TOP dataset.

RETRIEVAL AUGMENTATION

NN Index		
utterance1	semprase1	
utterance2	semparse ₂	
utterancen	semparsen	

Initial Problem

 \rightarrow utterance_p \rightarrow semparse_p

RETRIEVAL AUGMENTATION

initial: utterancep → nn-context: semparse2

NN Index		Initial Problem	
utterance1	semprase1	\rightarrow utterance _p \rightarrow semparse _p	
utterance2	semparse2	< Vearest Neighbour	
utterancen	semparsen		

NN index is build using pre-train BART Model

RETRIEVAL AUGMENTATION

initial: utterancep → nn-context: semparse2 → augment: semparse2 | utterancep

NN Index		
utterance1	semprase1	
utterance2	semparse2	
· · · · ·	 	
utterancen	semparsen	

Initial Problem

 \rightarrow utterance_p \rightarrow semparse_p

After Retrieval Augmentation

 \rightarrow semparse₂ | utterance_p \rightarrow semparse_p

EXAMPLE : RETRIEVAL AUGMENTATION

initial utterance : "please add 20 minutes on the lasagna timer"
expected semparse(decoupled): [in:add_time_timer [sl:date_time 20 minutes]
[sl:timer_name lasagna] [sl:method_timer timer]]

EXAMPLE : RETRIEVAL AUGMENTATION

initial utterance : "please add 20 minutes on the lasagna timer"
expected semparse(decoupled): [in:add_time_timer [sl:date_time 20 minutes]
[sl:timer_name lasagna] [sl:method_timer timer]]

nn utterance : "add ten minutes to the oven timer"

nn semparse (coupled): [in:add_time_timer add [sl:date_time ten minutes] to the
[sl:timer_name oven] [sl:method_timer timer]]

EXAMPLE : RETRIEVAL AUGMENTATION

initial utterance : "please add 20 minutes on the lasagna timer"
expected semparse(decoupled): [in:add_time_timer [sl:date_time 20 minutes]
[sl:timer_name lasagna] [sl:method_timer timer]]

nn utterance : "add ten minutes to the oven timer" nn semparse (coupled): [in:add_time_timer add [sl:date_time ten minutes] to the [sl:timer_name oven] [sl:method_timer timer]]

```
final utterance :[in:add_time_timer add [sl:date_time ten minutes] to the [sl:timer_name
oven] [sl:method_timer timer]] | please add 20 minutes on the lasagna timer
```

expected semparse (decoupled): [in:add_time_timer [sl:date_time 20 minutes]
[sl:timer_name lasagna] [sl:method_timer timer]]

RETRONLU

TOP-v2 DATASET

Source Domains		
Alarm	20,431	
Event	9,171	
Music	10,019	
Navigation	11,564	
Timer	23,055	

High Resource Setting Train 70%, Validation 10%, Test 20%

Target Domains		
weather	23055	
reminder	17841	

Low Resource Domain Adaptation Train 20 ex/per intent/slot Validation 10%, Test 20%

[1] Chen, X., Ghoshal, A., Mehdad, Y., Zettlemoyer, L., & Gupta, S. (2020). Low-Resource Domain Adaptation for Compositional Task-Oriented Semantic Parsing. *arXiv preprint arXiv:2010.03546*. EMNLP 2020

COPY TRANSFORMER MODEL

[1] Chen, X., Ghoshal, A., Mehdad, Y., Zettlemoyer, L., & Gupta, S. (2020). Low-Resource Domain Adaptation for Compositional Task-Oriented Semantic Parsing. *arXiv preprint arXiv:2010.03546*. EMNLP 2020

In this work we are focusing on the following questions:

(a) **Data Efficiency:** Can retrieval based on non-parametric external knowledge alleviate reliance on parametric knowledge typically acquired via supervised training on large labeled datasets?

RESULT AND ANALYSIS

- 1. Performance Analysis
 - a. Supervised Setting
 - b. Unsupervised Setting

(lot's labeled data) (limited label data)

SUPERVISED SETTING

1-NN FA vs without NN FA:	
Micro Average = 85.74 vs 84.43	(Δ 1.31)
Macro Average = 85.82 vs 84.66	(Δ 1.16)
Per-Domain FA:	
alarm = 88.57 vs 86.67	(Δ 1.90)
event = 84.77 vs 83.83	(Δ 0.94)
messaging = 94.65 vs 93.50	(Δ 1.15)
music = 80.71 vs 79.80	(Δ 0.91)
navigation = 85.20 vs 82.96	(Δ 2.24)
timer = 81.00 vs 81.21	(∇0.21)

No duplicate in NN (No-exact match)

increasing # of nn help (marginal Δ)

#neighbors	k = 1	k = 2	k = 3
without-nn	84.43	84.43	84.43
utterance-nn	85.28	85.35	85.40
semparse-nn	85.74	85.81	85.80

possible issues

- many similar nn (no diversity)

UNSUPERVISED SETTING

WHY UNSUPERVISED SETTING WORK

Quasi Symmetric Property of NN (training)

utterance1 <neighbour> utterance2 utterance2 <neighbour> utterance1

utterance₂ | utterance₁ \rightarrow semparse₁

utterance1 | utterance2 \rightarrow semparse2

input 1 & input 2 only position changed

please add 20 minutes on the lasagna timer | add ten minutes to the oven timer

→ [in:add_time_timer [sl:date_time 20 minutes] [sl:timer_name lasagna] [sl:method_timer timer]]

add ten minutes to the oven timer | please add 20 minutes on the lasagna timer

→ [in:add_time_timer [sl:date_time ten minutes] [sl:timer_name oven] [sl:method_timer timer]]

Contrastive Learning (Similar Examples)

UNSUPERVISED SETTING

Unsupervised

1-NN FA vs without NN FA	
Micro Average = 85.28 vs 84.43	(Δ 0
Macro Average = 85.56 vs 84.66	(Δ 0
Por Domain EA:	
Pel-Dolliali FA.	
alarm = 87.17 vs 86.67	(Δ 0
event = 85.03 vs 83.83	(Δ 1
messaging = 94.52 vs 93.50	(Δ 1
music = 80.73 vs 79.80	(Δ 0
navigation = 84.16 vs 82.96	(Δ 1
timer = 81.75 vs 81.21	(Δ 0

0.8) 0.9) 0.50) .20) .02) 0.93) .20) 0.54)

Supervised

1-NN FA vs without NN FA:	
Micro Average = 85.74 vs 84.43	(Δ 1.31)
Macro Average = 85.82 vs 84.66	(Δ 1.16)
Per-Domain FA:	
alarm = 88.57 vs 86.67	(Δ 1.90)
event = 84.77 vs 83.83	(Δ 0.94)
messaging = 94.65 vs 93.50	(Δ 1.15)
music = 80.71 vs 79.80	(Δ 0.91)
navigation = 85.20 vs 82.96	(Δ 2.24)
timer = 81.00 vs 81.21	(∇0.21)

UNSUPERVISED SETTING

In this work we are focusing on the following questions:

(a) **Data Efficiency:** Can retrieval based on non-parametric external knowledge alleviate reliance on parametric knowledge typically acquired via supervised training on large labeled datasets?

(b) *Limited Supervision:* Can we enhance models by using abundant and inexpensive unlabeled external non-parametric knowledge rather than structurally labeled knowledge?

RESULT AND ANALYSIS

- 1. Performance Analysis
 - a. Supervised Setting
 - b. Unsupervised Setting
 - c. Semi-Supervised
 - i. incremental update
 - ii. unlabeled data

(lot's labeled data) (limited label data)

(limited training) (limited label data)

RESULT AND ANALYSIS

- 1. Performance Analysis
 - a. Supervised Setting
 - b. Unsupervised Setting
 - c. Semi-Supervised
 - i. incremental update
 - ii. unlabeled data
- 2. Retrieval Analysis
 - a. Retrieval Quality
 - b. Simple vs Complex
 - c. Frequent vs Rare

(nn quality) (query complexity) (nn frequency)

(lot's labeled data) (limited label data)

(limited training) (limited label data)

In this work we are focusing on the following questions:

(a) **Data Efficiency:** Can retrieval based on non-parametric external knowledge alleviate reliance on parametric knowledge typically acquired via supervised training on large labeled datasets?

(b) *Limited Supervision:* Can we enhance models by using abundant and inexpensive unlabeled external non-parametric knowledge rather than structurally labeled knowledge?

(c) **Noise Robustness:** Can a model opt to employ parametric knowledge rather than non-parametric knowledge in a resilient manner, e.g. when the non-parametric information is unreliable?

SENSITIVITY TO NN

SENSITIVITY TO NN

Stability with rand-NN

-

Improvement much better with better NN

Top 1 > Top 100 (Random)

SENSITIVITY TO NN

Stability with rand-NN

-

-

Improvement much better with better NN

Top 1 > Top 100 (Random)

Different Domain Random NN

- improvement semparse-nn
- marginally hurts utterance-nn

In this work we are focusing on the following questions:

(a) **Data Efficiency:** Can retrieval based on non-parametric external knowledge alleviate reliance on parametric knowledge typically acquired via supervised training on large labeled datasets?

(b) *Limited Supervision:* Can we enhance models by using abundant and inexpensive unlabeled external non-parametric knowledge rather than structurally labeled knowledge?

(c) *Noise Robustness:* Can a model opt to employ parametric knowledge rather than non-parametric knowledge in a resilient manner, e.g. when the non-parametric information is unreliable?

(d) *Utterance Complexity:* Is nonparametric external knowledge addition effective for both uncommon and complex structured (hierarchical) examples?

SIMPLE VS COMPLEX UTTERANCE

IN:GET_DIRECTIONS complex utterance (v1 \rightarrow v2), more domains SL:DESTINATION Driving directions to hierarchical nesting а. multiple intent b. IN: GET EVENT [sl:] can have also have [in: SL:NAME_EVENT SL:CAT EVENT depth 2 to 7 İİ. the # example with depth **Eagles** dame 1:22409 (81.9%) Figure 1: An compositional query from TOP dataset. 2:4190 (15.3%)>= 3 : 737 (2.7%)

[1] Chen, X., Ghoshal, A., Mehdad, Y., Zettlemoyer, L., & Gupta, S. (2020). Low-Resource Domain Adaptation for Compositional Task-Oriented Semantic Parsing. *arXiv preprint arXiv:2010.03546*. EMNLP 2020

PERFORMANCE: SIMPLE VS COMPLEX UTTERANCE

RETRIEVAL: SIMPLE VS COMPLEX UTTERANCE

Retrieval NN better for simple than complex

RETRIEVAL: SIMPLE VS COMPLEX UTTERANCE

Retrieval NN better for simple than complex

Recall suffer the most for complex queries

RETRIEVAL: SIMPLE VS COMPLEX UTTERANCE

PERFORMANCE: RARE vs FREQUENT

PERFORMANCE: RARE vs FREQUENT

RETRIEVAL QUALITY (RARE vs FREQUENT)

In this work we are focusing on the following questions:

(a) **Data Efficiency:** Can retrieval based on non-parametric external knowledge alleviate reliance on parametric knowledge typically acquired via supervised training on large labeled datasets?

(b) *Limited Supervision:* Can we enhance models by using abundant and inexpensive unlabeled external non-parametric knowledge rather than structurally labeled knowledge?

(c) **Noise Robustness:** Can a model opt to employ parametric knowledge rather than non-parametric knowledge in a resilient manner, e.g. when the non-parametric information is unreliable?

(d) *Utterance Complexity:* Is nonparametric external knowledge addition effective for both uncommon and complex structured (hierarchical) examples?

(e) *Knowledge Efficiency:* Is it beneficial to continue adding external information, or are there certain boundaries and challenges?

RETRIEVAL QUALITY

TAKEAWAY

- 1. In this work, we explore RETRONLU: retrieval based modeling approach for task-oriented semantic parsing problem.
- 2. RETRONLU makes explicit use of memory of retrieve examples of semantic parses that the model learn to adapt for other similar input utterance.
- 3. We analyse the robustness and sensitivity of RETRONLU in several dimensions as follows:
 - a. Data Efficiency
 - b. Limited Supervision
 - c. Noise Robustness
 - d. Utterance Complexity
 - e. Knowledge Efficiency

EXAMPLES

Incorrect after nearest neighbour

- Input \Rightarrow set a timer for 5 minutes at 4 : 30 pm
- Target ⇒ [in:create_timer [sl:date_time for 5 minutes at 4 : 30 pm] [sl:method_timer timer]]
- Prediction ⇒ [in:create_timer [sl:method_timer timer] [sl:date_time for 5 minutes at 4 : 30 pm]]

Input ⇒ [in:create_timer set [sl:method_timer timer] [sl:date_time for 15 minutes at 2 : 00 pm]] | set a timer for 5 minutes at 4 : 30 pm

Target ⇒ [in:create_timer [sl:method_timer timer] [sl:date_time for 5 minutes at 4 : 30 pm]]

Prediction \Rightarrow [in:unsupported_timer]

Correct after nearest neighbour

- Input \Rightarrow does the traffic get better after 5 p.m
- Target \Rightarrow [in:get_info_traffic [sl:date_time after 5 p.m]]
- Prediction \Rightarrow [in:unsupported_navigation]

Input \Rightarrow [in:get_info_traffic [sl:date_time before 5 p.m to 6:00 pm]] | does the traffic get better after 5 p.mTarget \Rightarrow [in:get_info_traffic [sl:date_time after 5 p.m]]Prediction \Rightarrow [in:get_info_traffic [sl:date_time after 5 p.m]]

See More Examples

Extra slides

FOLLOW UP (TARGET ACL 2021)

- 1. Improving Retrieval Quality
 - a. indexing focus on capturing the semparse structure
 - b. diversifying NN by grouping on structural similarity
- 2. Joint training to Improve modeling
 - a. Joint training model with indexing (alt. indexing & training)
 - b. Similar to MARGE or ReaLM model
- 3. Zero-shot setting just updating index for out-of-domain structure
- 4. Applications: Multilingual / Conversational / FB-Marketplace

LITERATURE AND RELEVANT LINKS

- 1. Proposed Project Proposal
- 2. <u>Model Literature Review</u>
- 3. Best Coverage vs Pre-trained Bart NN
- 4. Experimental Results