#### TRANS-KBLSTM: An External Knowledge Enhanced Transformer BiLSTM model for Tabular Reasoning https://trans-kblstm.github.io



Bloomberg

Engineering

Yerram Varun<sup>1\*</sup>, Aayush Sharma<sup>1\*</sup>, Vivek Gupta<sup>2\*</sup>, <sup>1</sup>IIT Guwahati; <sup>2</sup>University of Utah

> <sup>2</sup>Bloomberg Ph.D. Fellow <sup>2</sup>on academic job market



#### **TABULAR INFERENCE PROBLEM**

- The tabular natural language inference problem is similar to standard NLI
- But here, the premises are tabular data
- Task: to decide whether given hypothesis is **true** (entailment), **false** (contradiction) or **undetermined** (neutral) given a premise table

Check out InfoTabs (Gupta et al., 2020) https://infotabs.github.io

#### New York Stock Exchange

| Type            | Stock exchange                |
|-----------------|-------------------------------|
| Location        | New York City, New York, U.S. |
| Founded         | May 17, 1792; 226 years ago   |
| Currency        | United States dollar          |
| No. of listings | 2,400                         |
| Volume          | US\$20.161 trillion (2011)    |

H1: NYSE has fewer than 3,000 stocks listed.

H2: Over 2,500 stocks are listed in the NYSE.

H3: S&P 500 stock trading volume is over \$10 trillion.

In this example from the InfoTabS dataset (Gupta et al., 2020),

H1: entailed ; H2: contradictory ; H3: neutral

#### **KNOWLEDGE ADDITION**

- Many a times, **External knowledge** is necessary for model inference.
- These requirements limit the performance of neural models
- **Task:** To use external **knowledge graphs** to supplement deep learning architectures for improved reasoning.

In this example from INFOTABS, predicting the Gold label requires broad understanding of

#### California is located on the Coast.

| James Hetfield   |                                                          |  |  |  |
|------------------|----------------------------------------------------------|--|--|--|
| Birth Name       | James Alan Hetfield                                      |  |  |  |
| Born             | Aug. 3, 1963(age 58), California, U.S.                   |  |  |  |
| Genres           | Heavy metal, thrash metal, hard rock                     |  |  |  |
| Occupation(s)    | Musician, Singer                                         |  |  |  |
| Instruments      | Vocals, Guitar                                           |  |  |  |
| Years active     | 1978-present                                             |  |  |  |
| Labels           | Warner Bros, Elektra, MegaForce                          |  |  |  |
| Hypothesis       | James Hetfield was born on the west<br>coast of the USA. |  |  |  |
| Focused Relation | $coast \xleftarrow{AtLocation} california$               |  |  |  |
| Human            | Entailment                                               |  |  |  |
| RoBERTa          | Neutral                                                  |  |  |  |
| Trans-KBLSTM     | Entailment                                               |  |  |  |

Recent work on using external knowledge for tabular reasoning use **explicit addition of knowledge** i.e. knowledge appended at additional input context.

Recent work on using external knowledge for tabular reasoning use **explicit addition of knowledge** i.e. knowledge appended at additional input context.

## Questions

• *Knowledge Extraction*: How can we extract **contextually relevant** knowledge from external source?

Recent work on using external knowledge for tabular reasoning use **explicit addition of knowledge** i.e. knowledge appended at additional input context.

## Questions

- *Knowledge Extraction*: How can we extract **contextually relevant** knowledge from external source?
- Knowledge Representation: How to effectively represent external semantic knowledge relations?

Recent work on using external knowledge for tabular reasoning use **explicit addition of knowledge** i.e. knowledge appended at additional input context.

## Questions

- *Knowledge Extraction*: How can we extract **contextually relevant** knowledge from external source?
- Knowledge Representation: How to effectively represent external semantic knowledge relations?
- *Knowledge Integration*: How to schematically integrate external knowledge into model architectures?

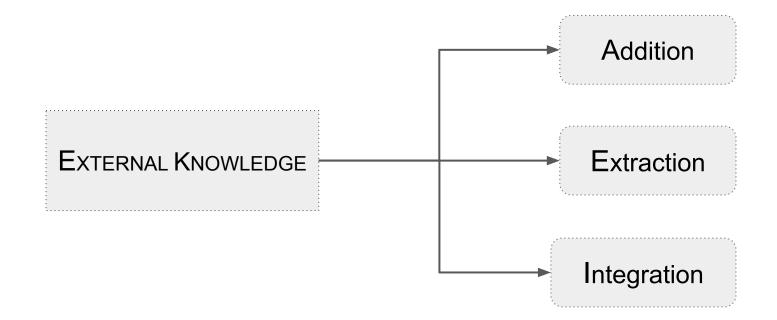
#### TAKEAWAY

Through a *novel architecture*, *Trans-KBLSTM*, this work investigates strategies to tackle challenges inherent in **existing methodologies** of *Knowledge Extraction, Addition, and Integration.* 

The effectiveness is assessed through INFOTABS, a Tabular NLI Dataset.

Check out InfoTabs (Gupta et al., 2020) https://infotabs.github.io

#### CHALLENGES



#### **CHALLENGES: KNOWLEDGE EXTRACTION**

• KG-Explicit (Neeraja et al., 2021) augments the input with **lengthy key definitions**.

• Add **noise** and **confusion** caused by **lengthy additions**. At times definitions are incorrect.

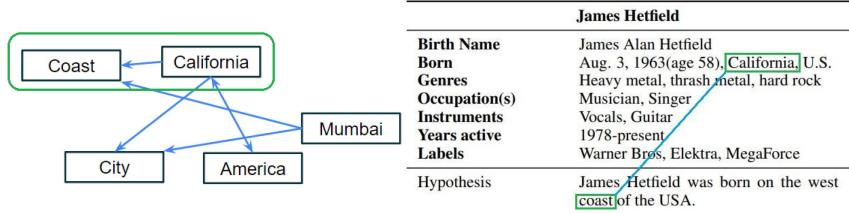
Dr. Max Born has no connection with Julius Caesar

**Orignal Premise** Julius Caesar was born on 12 or 13 July 100 BC Rome. Julius Caesar died on 15 March 44 BC (aged 55) Rome. The resting place of Julius Caesar is Temple of Caesar, Rome. The spouse(s) of Julius Caesar are Cornelia (84-69 BC; her death), Pompeia (67-61 BC; divorced), Calpurnia (59-44 BC; his death).

**Orignal Premise + KG explicit** Julius Caesar died on 15 March 44 BC (aged 55) Rome. **The resting place of Julius Caesar is Temple of Caesar, Rome.** Julius Caesar was born on 12 or 13 July 100 BC Rome. The spouse(s) of Julius Caesar are Cornelia (84-69 BC; her death), Pompeia (67-61 BC; divorced), Calpurnia (59-44 BC; his death). KEY: Died is defined as pass from physical life and lose all bodily attributes and functions necessary to sustain life . KEY: Resting place is defined as a cemetery or graveyard is a place where the remains of dead people are buried or otherwise interred . KEY: Born is defined as british nuclear physicist (born in germany) honored for his contributions to quantum mechanics (1882-1970) . KEY: Spouse is defined as a spouse is a significant other in a marriage, civil union, or common-law marriage .

Hypothesis Julius Caesar was buried in Rome.

#### SOLUTION: RELATIONAL CONNECTIONS AND KGs



#### sample knowledge graph

#### table premise relevant attention

Semantic knowledge graphs represent the relationships between the hypothesis and premise token pairs.

To extract relevant knowledge, use the semantic relational connections between premise and hypothesis tokens.

#### **CHALLENGES: KNOWLEDGE ADDITION**

Definition adds lengthy text to the multi-head attention.

Unnecessary noise is introduced in this process

#### MULTI-HEAD ATTENTION

Premise <Key1: Definition1> <Key2: Definition2> + Hypothesis

## **CHALLENGES: KNOWLEDGE ADDITION**

Definition adds lengthy text to the multi-head attention.

Unnecessary noise is introduced in this process

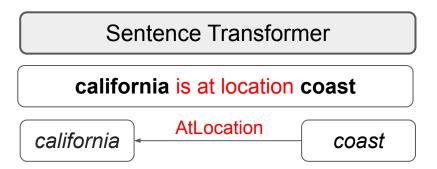
#### MULTI-HEAD ATTENTION

Premise <Key1: Definition1> <Key2: Definition2> + Hypothesis

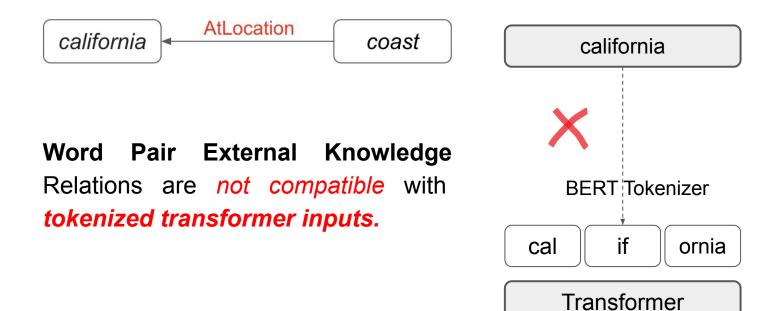
## SOLUTION

Knowledge Triplets are converted to sentences.

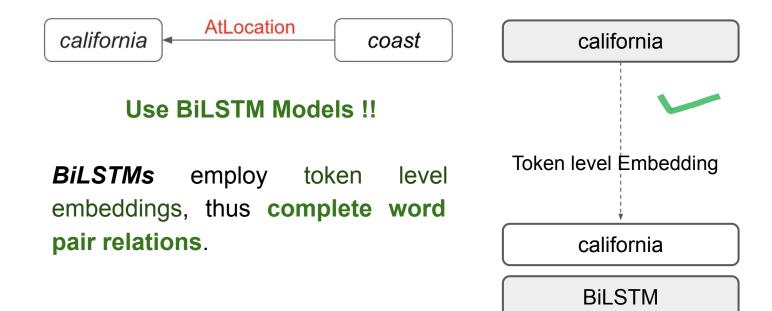
Sentences are encoded using Sentence Transformers.



#### **CHALLENGES : KNOWLEDGE INTEGRATION**



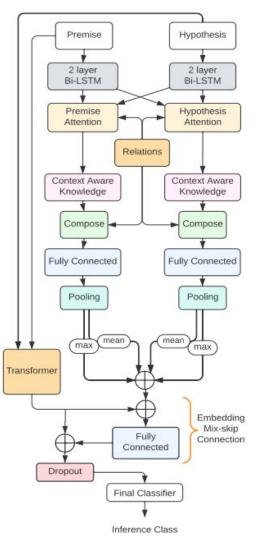
#### SOLUTION: USING BiLSTM MODELS



#### **PROPOSED APPROACH**

## **TRANS-KBLSTM**

An Overview of the Architecture



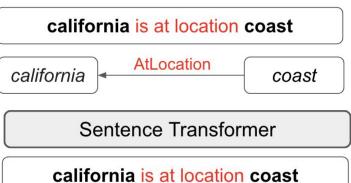
#### PREPROCESSING

• Retrieve relational connections

|                      | James Hetfield                         |  |  |
|----------------------|----------------------------------------|--|--|
| Birth Name           | James Alan Hetfield                    |  |  |
| Born                 | Aug. 3, 1963(age 58), California, U.S. |  |  |
| Genres               | Heavy metal, thrash metal, hard rock   |  |  |
| <b>Occupation(s)</b> | Musician, Singer                       |  |  |
| Instruments          | Vocals, Guitar                         |  |  |
| Years active         | 1978-present                           |  |  |
| Labels               | Warner Bros, Elektra, MegaForce        |  |  |
| Hypothesis           | James Hetfield was born on the west    |  |  |
|                      | coast of the USA.                      |  |  |

• Convert into sentence triplets





#### **RELATIONS ATTENTION AND EMBEDDING**

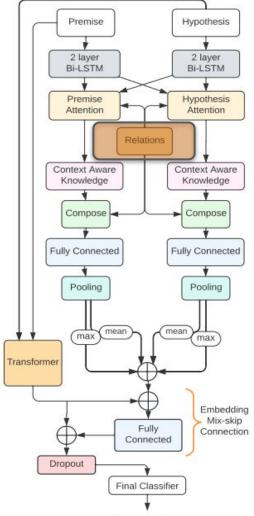
| Pre  | emise   | a1  | a2   | a3  |
|------|---------|-----|------|-----|
| Нуро | othesis | 1   | Like | You |
| b1   | I       | r11 | r21  | r31 |
| b2   | Hate    | r12 | r22  | r32 |
| b3   | You     | r13 | r23  | r33 |

#### **RELATIONAL ATTENTION MATRIX**

**BERT REPRESENTATIONS** 

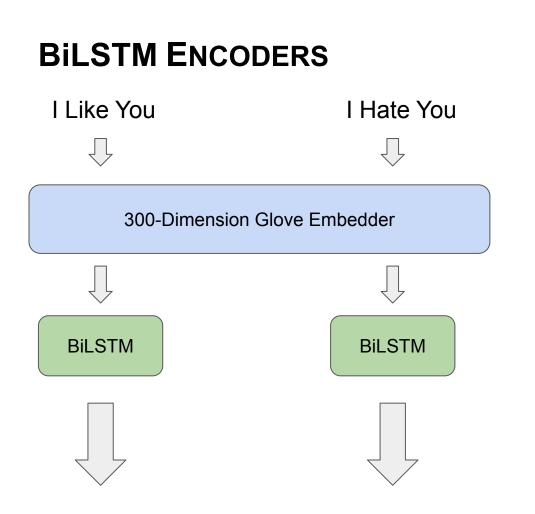
**RELATIONAL EMBEDDING MATRIX** 

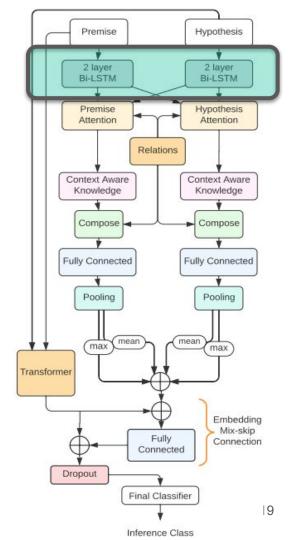
| Premise    | a1  | a2   | a3  | 7 |
|------------|-----|------|-----|---|
| Hypothesis | i.  | Like | You |   |
| b1 I       | R11 | R21  | R31 |   |
| b2 Hate    | R12 | R22  | R32 |   |
| b3 You     | R13 | R23  | R33 |   |

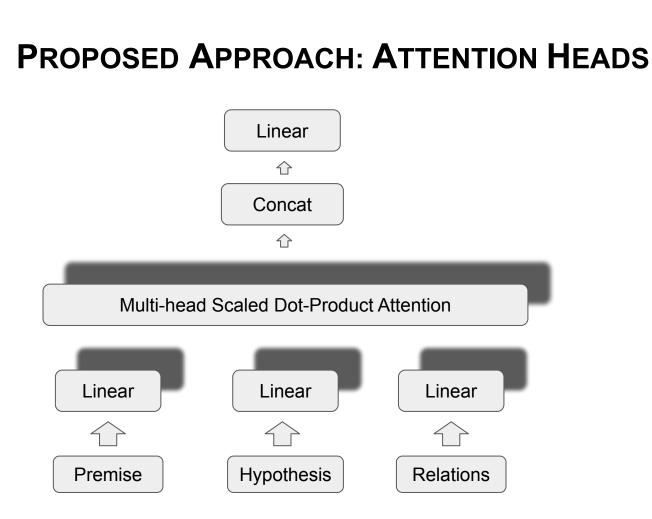


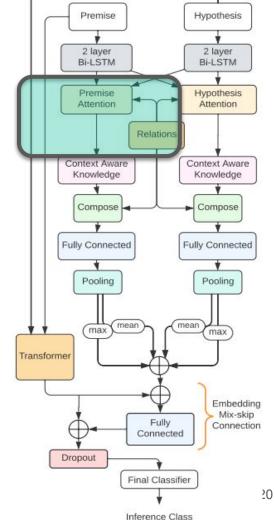
Inference Class

18

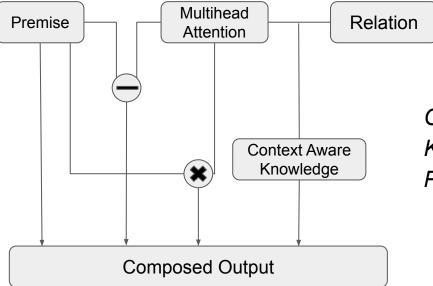




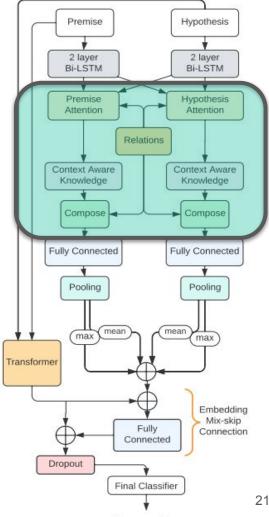




#### **COMPOSE KNOWLEDGE**



*Composition* of *Knowledge* with *Pr/Hyp Attention* 

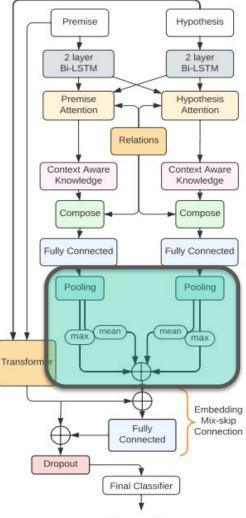


Inference Class

#### **MEAN AND MAX POOLING**

The Composed Premise and Hypothesis are **MEAN** and **MAX** pooled separately.

$$p_{mean} = \text{MeanPool}(p^m) ; p_{max} = \text{MaxPool}(p^m)$$
  
 $h_{mean} = \text{MeanPool}(h^m) ; h_{max} = \text{MaxPool}(h^m)$ 



Inference Class

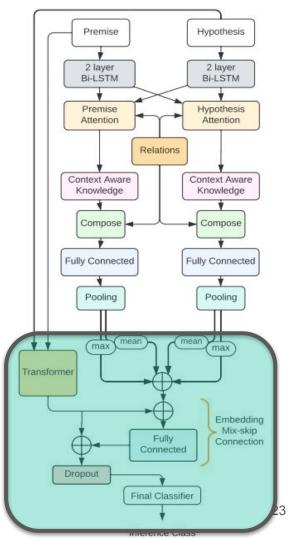
22

#### TRANSFORMER

#### **Embedding Mix-Skip Connection**

- Mix representations from transformers and the pooling Layer.
- A effective way to integrate both the embeddings.

- Apply Dropout for Regularization
- Fully connected layers
- Final Dense layer with 3 class outputs.



### INFOTABS DATASET

InfoTabS dataset splits :

- **α1** contains table from same domain (similar to dev & train set)
- α2 has examples from same domain but entail-contradict label (e.g. 'over' to 'under') flipped by minimal change i.e. adversarial.
- **α3** is **zero-shot** cross domain tables (exclusive from train set domains)

#### MODELS

We considered the following models for our experiments:

- **RoBERTa** : a baseline Transformer model without knowledge.
- **KG Explicit** represent Knowledge-InfoTabS (Neeraja et al., 2021)
- **Tok-KTrans** appending *WordNet Tokens* to Transformer Inputs
- **Trans-KBLSTM** our new proposed approach

Check out Knowledge-InfoTabs: <u>https://knowledge-infotabs.github.io</u>

- How effective is our proposed approach for INFOTABS for:
  - Full Supervision
  - Limited Supervision
- Is our proposed approach *more beneficial* to certain sorts of reasoning types?
- Ablation Study: How important are each individual components?
  - Embedding mix-skip Connection
  - Knowledge Addition
  - Independent training of Transformer and LSTM
  - MNLI Pretraining

 $\bigcirc$ 

Transformer Size

----- refer to paper for details

- How effective is our proposed approach for INFOTABS for:
  - Full Supervision

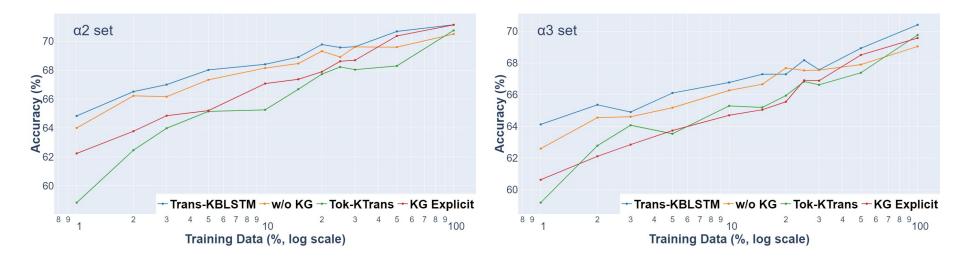
| Model         | Dev   | α1    | $\alpha 2$ | $\alpha 3$ |
|---------------|-------|-------|------------|------------|
| w/o Knowledge | 77.30 | 76.44 | 70.49      | 69.05      |
| Tok-KTrans    | 78.17 | 76.19 | 70.75      | 69.77      |
| KG Explicit   | 78.97 | 77.84 | 71.13      | 69.58      |
| Trans-KBLSTM  | 79.92 | 79.62 | 72.10      | 70.21      |

Our proposed approach outperform other baselines!

\*Reported numbers are average over three random seed runs

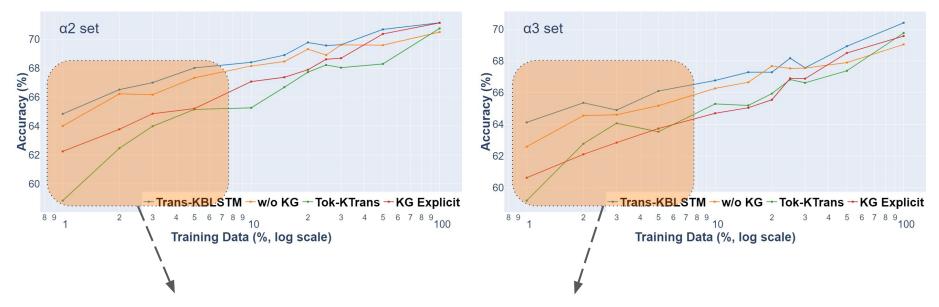
- How effective is our proposed approach for INFOTABS for:
  - Full Supervision
  - Limited Supervision

## **LIMITED SUPERVISION SETTING**



Model performance trained with limited supervision for  $\alpha_2$  and  $\alpha_3$ 

## LIMITED SUPERVISION SETTING

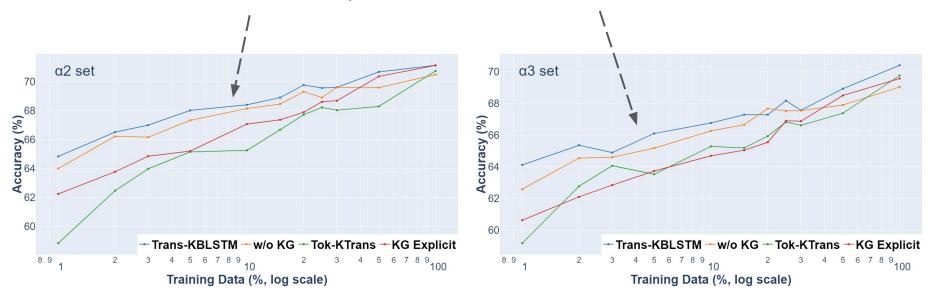


In comparison to complete supervision, improvement in limited setting more substantial.

\*Reported numbers are average over three random seed runs

#### **RESULTS AND ANALYSIS: LIMITED SUPERVISION SETTING**

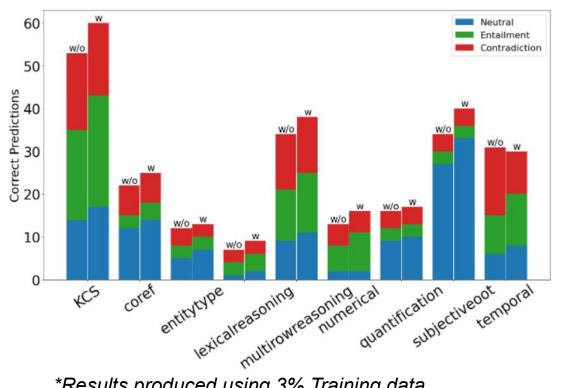
Trans-KBLSTM outperform other baseline models!



\*Reported numbers are average over three random seed runs

- How effective is our proposed approach for INFOTABS for:
  - Full Supervision
  - Limited Supervision
- Is our proposed approach *more beneficial* to certain sorts of reasoning types?

#### **REASONING ANALYSIS**

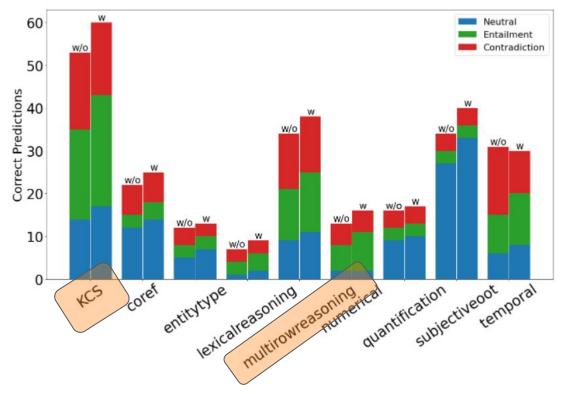


w/o:RoBERTa w: Trans-KBLSTM

Proposed approach shows improvement almost across all reasoning types!

\*Results produced using 3% Training data

## **REASONING ANALYSIS**



\*\*Results produced using 3% Training data

w/o : RoBERTa w : Trans-KBLSTM

Let us go through examples for two reasoning types:

- 1. Knowledge-Common Sense (KCS)
- 2. Multirow Reasoning

For **lexical reasoning**, refer to paper

#### Knowledge and Common Sense Reasoning

Tables involve *factual information about world affairs.* 

*Knowledge Graphs* can **supplement this reasoning** abilities to our models.

The *relation* between *kingdom* and *Monarch* helps produce correct inference.

Hashemite Kingdom of Jordan Premise

The Legislature of Hashemite Premise Kingdom of Jordan are Parliament. The Religion of Hashemite Kingdom of Jordan are 95% Islam (official), 4% Christianity, and 1% Druze, Baha'i. The Government of Hashemite Kingdom of Jordan are Unitary parliamentary constitutional monarchy. The Monarch of Hashemite Kingdom of Iordan is Abdullah II Hypothesis Hashemite Kingdom of Jordan does not have any democracy. Kingdom  $\xleftarrow{IsA}$  Monarch Focused Relation Gold Label Contradiction Prediction RoBERTa Neutral Trans-KBLSTM Contradiction

#### **Multi-Row Reasoning**

## Relational connections encourage *Implicit Extraction*

## The relations enforces the model to focus on *right evidence i.e. relevant rows* of the table

| Jei                  | ff Bridges Premise                                                                                                                                                                                                                                                                       |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Premise              | The Born of Jeff Bridges are De-<br>cember 4, 1949 (age 69) Los<br>Angeles, California, U.S The<br>Years active of Jeff Bridges are<br>1951-present. The Children of<br>Jeff Bridges are 3. The Family<br>of Jeff Bridges are Beau Bridges<br>(brother), and Jordan Bridges<br>(nephew). |
| Hypothesis           | Jeff Bridges started his career as                                                                                                                                                                                                                                                       |
|                      | a young child.                                                                                                                                                                                                                                                                           |
| Focused<br>Relations | born $\xrightarrow{RelatedTo}$ young                                                                                                                                                                                                                                                     |
|                      | born $\xrightarrow{RelatedTo}$ child                                                                                                                                                                                                                                                     |
|                      | child $\xrightarrow{RelatedTo}$ age                                                                                                                                                                                                                                                      |
|                      | active $\xrightarrow{Co-Hyponym}$ child                                                                                                                                                                                                                                                  |
| Gold Label           | Entailment                                                                                                                                                                                                                                                                               |
|                      | Prediction                                                                                                                                                                                                                                                                               |
| RoBERTa              | Contradiction                                                                                                                                                                                                                                                                            |
| Trans-KBLSTM         | Entailment                                                                                                                                                                                                                                                                               |
|                      |                                                                                                                                                                                                                                                                                          |

T CC D 'I D

.

- How effective is our proposed approach for INFOTABS for:
  - Full Supervision
  - Limited Supervision
- Is our proposed approach *more beneficial* to certain sorts of reasoning types?
- Ablation Study: How important are each individual components?
  - Embedding mix-skip Connection
  - Knowledge Addition
  - Independent training of Transformer and LSTM
  - MNLI Pretraining

 $\bigcirc$ 

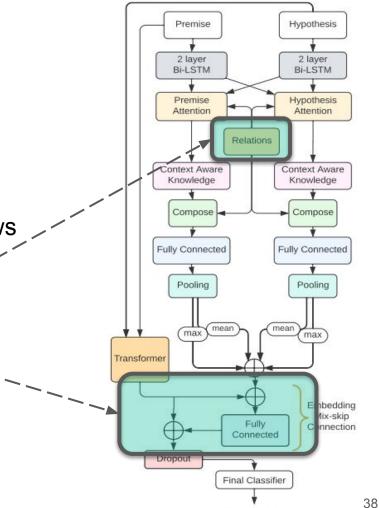
Transformer Size

----- refer to paper for details

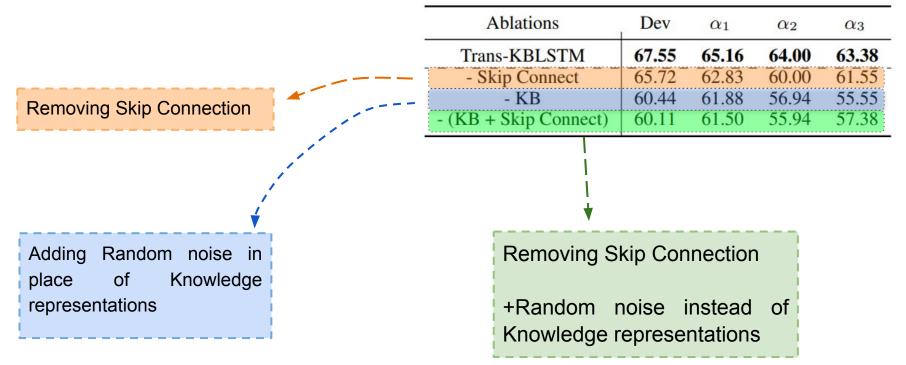
#### Embedding Mix-Skip Connection And Knowledge Relations

We ablate these components one by one as follows

- +Random Noise instead of Knowledge 1.
- Remove Embedding Skip Connection -2.

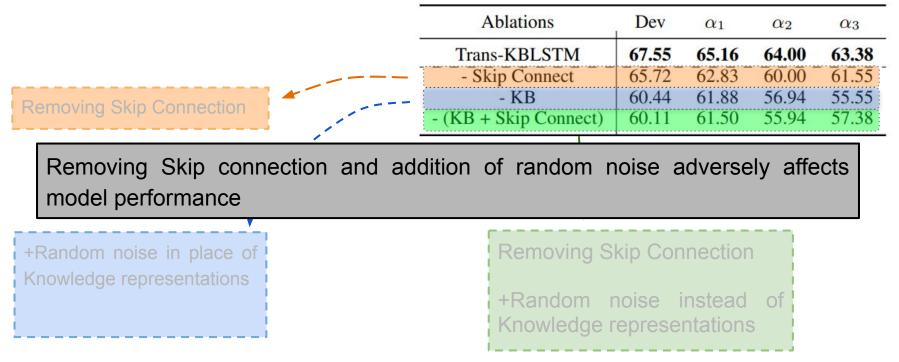


# Embedding Mix-Skip Connection & Knowledge Relations



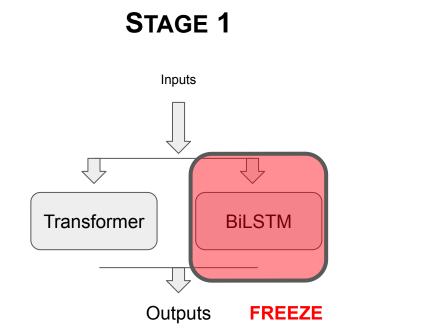
\*Results produced using 1% Training data

# Embedding Mix-Skip Connection & Knowledge Relations

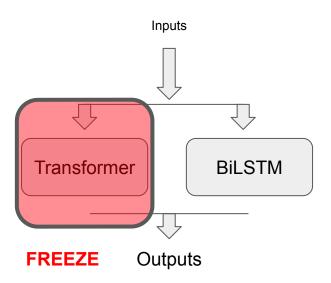


\*Results produced using 1% Training data

#### **INDEPENDENT TRAINING**







#### **INDEPENDENT VS JOINT TRAINING**

Joint Training better performance!

| Ablations              | Dev   | $\alpha_1$ | $\alpha_2$ | $\alpha_3$ |
|------------------------|-------|------------|------------|------------|
| RoBERTaLARGE           | 77.30 | 76.44      | 70.49      | 69.05      |
| + KBLSTM (Independent) | 79.22 | 78.38      | 71.00      | 69.22      |
| + KBLSTM (Joint Train) | 79.92 | 79.62      | 72.10      | 70.21      |

Reasons: Brings both embeddings to same representational space

\*\*Results produced using 1% Training data

#### TAKEAWAY

This work proposed a novel architecture **Trans-KBLSTM** to solve challenges in *Knowledge Extraction, Addition and Integration.* 

Through **extensive experiments** on the InfoTabS dataset we shown that proposed architecture **enhance inference performance**.

#### Check out TransKBLSTM: https://trans-kblstm.github.io