XINFOTABS: Evaluating Multilingual Tabular Natural Language Inference https://xinfotabs.github.io/

Bhavnick Singh Minhas^{1*}, Anant Shankhdhar^{1*}, Vivek Gupta^{2*}, Divyanshu Aggarwal³, Shuo Zhang⁴

¹Indian Institute of Technology Guwahati; ²University of Utah; ³Delhi Technological University; ⁴Bloomberg LP.

²on academic job market ²Bloomberg Ph.D. Fellow

TABULAR INFERENCE

- The **tabular natural language inference** problem is similar to standard NLI
- But here, the premises are tabular data
- Task: to decide whether given hypothesis is true (entailment), false (contradiction) or undetermined (neutral) given a premise table

Boxing (en)			
Focus	Punching, striking		
Olympic sport	688 BC (Ancient Greece		
	1904 (modern)		
Parenthood	Bare-knuckle boxing		
Country of origin	Prehistoric		
Also known as	Western Boxing, Pugilism		
	See note.		

H1: The modern form of boxing started in the late 1900's. \rightarrow **Contradiction**

Check out INFOTABS (Gupta et al., 2020) https://infotabs.github.io

MOTIVATION

To date, no work has been done in the field of multilingual tabular inference. All existing works are done entirely in English language.

MOTIVATION

To date, no work has been done in the field of multilingual tabular inference. All existing works are done entirely in English language.

Questions

• How can we create a dataset that can be leveraged to train and evaluate multilingual models for the task?

MOTIVATION

To date, no work has been done in the field of multilingual tabular inference. All existing works are done entirely in English language.

Questions

- How can we create a dataset that can be leveraged to train and evaluate multilingual models for the task?
- How well can multilingual models (for example, XLM-RoBERTa and mBERT) reason about multilingual tabular inference?

For Tabular Natural Language Inference, it's **not enough** to **only focus in English.**

Progress in Tabular Inference must be made across the board, and this includes all languages.

OUR CONTRIBUTIONS

- XINFOTABS, is a multilingual dataset for semi-structured tabular inference which contains instances in ten diverse languages.
- To create XINFOTABS, we leverage cutting-edge machine translation models which provide high-quality translations of semi-structured tabular data.

• We access reasoning ability of state-of-the-art multilingual models trained with varying strategies over XINFOTABS.

EXAMPLE FROM XINFOTABS DATASET

Boxing (en)		Boxe (fr)		
Focus	Punching, striking	Focus	Punching, frappe	
Olympic sport	688 BC (Ancient Greece),	Sport olympique	688 av. JC. (Grèce ancienne),	
	1904 (modern)		1904 (moderne)	
Parenthood	Bare-knuckle boxing	Parentalité	Bare-knuckle boxe	
Country of origin	Prehistoric	Pays d'origine	Préhistorique	
Also known as	Western Boxing, Pugilism	Aussi connu sous le nom	Western Boxing,	
	See note.	tere az menemenen ere er ar for dit 1919 benele handet fordet.	Pugilism Voir note.	

English Table

French Table (en \rightarrow fr)

Language	Hypothesis	Label
English	The modern form of boxing started in the late 1900's.	CONTRADICTION
German	Boxen hat seinen Ursprung als olympischer Sport, der vor Jahrtausenden begann.	CONTRADICTION
French	La boxe occidentale implique des punches et des frappes	ENTAILMENT
Spanish	El boxeo ha sido un evento olímpico moderno durante más de 100 años.	ENTAILMENT
Afrikaans	Bare-knuckle boks is 'n prehistoriese vorm van boks.	NEUTRAL

CHALLENGES

• Tabular data that is semi-structured contains succinct, non-sentential implicit information. As a result, translation is difficult.

• Translation quality is not universal. Quality varies with multilingual models (e..g mBART, M2M, MarianMT), 11 languages and data format (i.e. table, hypothesis)

• How to measure the translations quality using automatic metric and human rating especially for tabular semi-structured data.

Since the table is a list of key value pairs, we first **linearize every row** so that both the **key and value can be translated jointly**.

Instead of transliterating, open source machine translation models **translate named entities**.

Therefore, we **highlight** ("") the **named entities** and **numbers** in the linearized rows for transliteration.

Add additional context in term of Category Information.

The category, key and value are **separated by** a **delimiter** (|).

Translate each row using a suitable translation models.

For each language, we utilize a different model (*Optimal).

After translating we remove the added context i.e. category information.

We also convert the delimiter (|) to colon (:). Also, add semi-colon (;) in row end.

Next, we **remove the highlights** ("") around the **named entities** for all rows.

Finally, we extract the translated keys and values from the linearised translated rows, and return them to tabular format.

Paraphrase score			
Capture betweer back-tra	sim n origina Inslated	ilarity al and texts.	
Embedding created using all-mpnet-v2 model trained with Sentence BERT.			
 		1	

Capture similarity between original and back-translated texts.	Us - b en
Embedding created using all-mpnet-v2 model trained with Sentence BERT.	Fin

Multilingual ParaScore

- Use multilingual-mpnet -base-v2 model to creates embeddings for both original and translated text.
- Finally, calculate the cosine similarity between the two embeddings.

Paraphrase score	Multilingual ParaScore	BERTScore
Capture similarity between original and back-translated texts. Embedding created using all-mpnet-v2 model trained with	Use multilingual-mpnet -base-v2 model to creates embeddings for both original and translated text. Finally, calculate the	An automatic score which uses BERT embedding similarity to estimate translation quality.
Sentence BERT.	the two embeddings.	

Paraphrase score	Multilingual ParaScore	BERTScore	Human Score
Capture similarity between original and back-translated texts. Embedding created using all-mpnet-v2 model trained with Sentence BERT.	Use multilingual-mpnet -base-v2 model to creates embeddings for both original and translated text. Finally, calculate the cosine similarity between the two embeddings.	An automatic score which uses BERT embedding similarity to estimate translation quality.	Five annotators to label 500 examples per model and language. Follow, the Koehn and Monz, 2006 annotation guidelines.

SELECTING THE MODEL FOR TRANSLATION

Translation Model Preference

High Resource

 Bi-lingual MT models (MarianMT)

*Languages arranged in order of open source translation resource size

SELECTING THE MODEL FOR TRANSLATION

Translation Model Preference

High Resource

 Bi-lingual MT models (MarianMT)

Mid & Low Resource

- Multi-lingual models (mBART or M2M)

*Languages arranged in order of open source translation resource size

SEVERAL TEST-SPLITS MITIGATE ARTIFACT ISSUES

Claim: A single fixed test set is not enough

Need multiple test sets with controlled differences from each other.

• **α1** contains table from same domain (similar to dev & train set)

 α2 has examples from same domain but entail-contradict label (e.g. 'over' to 'under') flipped by minimal change i.e. adversarial.

• α3 is zero-shot cross domain tables (exclusive from train set domains)

Check out INFOTABS: <u>https://infotabs.github.io</u>

Translated Test

- Tables and Hypothesis are translated to English.
- Uses original INFOTABS data for training.
- English translated data is used for inference.

Results on $\underline{\alpha}_1$ test set

Language Specific Training

- Training and evaluation done on each language separately i.e. multiple bilingual models
- Each model is evaluated on same language set it is specifically trained on.

*we also did a cross lingual evaluation of these models

Results on $\underline{\alpha}_1$ test set

Multi Language Fine Tuning (En Only)

- Multiple models first trained for English InfoTabS data.
- Followed by Language Specific
 Fine tuning for each language.
 i.e. multiple bilingual models
- Each model is evaluated on same language set as it is specifically trained on.

Multi Language Fine tuning (All Languages)

- Unified model first trained for English InfoTabS data.
- Followed by Language Specific Fine tuning for All languages.
 i.e. unified multilingual model
- Unified model is evaluated on all the language set.

Bi-lingual Inference English Premise, Multilingual Hypothesis

Use English Premise with language specific hypothesis. I.e. bilingual models

Here too, each model is evaluated on the language is trained on.

LANGUAGE SPECIFIC PERFORMANCE COMPARISON

XLM-RoBERTa > mBERT

- more parameters
- learning objective
- longer training
- more languages

High Resource > Low Resource Performance

 mBERT more consistent

Results on $\underline{\alpha}_1$ for Language Specific Baseline Task

CROSS LANGUAGE MODEL CONSISTENCY

CROSS LANGUAGE MODEL CONSISTENCY

CROSS LANGUAGE MODEL CONSISTENCY

CONFUSION MATRIX

For **low resource** model **wrongly** predict **Entailment for Contradiction** In addition, for **Hi**, the model **predicts Neutral for Entailment instances**

TAKEAWAY

- XINFOTABS, is a multilingual dataset for semi-structured tabular inference which contains instances in ten diverse languages.
- To create XINFOTABS, we leverage cutting-edge machine translation models which provide high-quality translations of semi-structured tabular data.

• We access reasoning ability of state-of-the-art multilingual models trained with varying strategies over XINFOTABS.