
P-SIF: Document Embeddings using Partition

Averaging

Derivation of P-SIF Embeddings

To derive the P-SIF embedding, we propose a generative model
which treats corpus generation as a dynamic process where the tth

word is produced at step t. This process is driven by random walk
over a unit norm sphere with the center at the origin. Let ~vct be the
d dimensional vector from the origin to the current walk point at
time t. We call this vector the context vector ~vct as it represents the
context in the discussion. Let Zc represent the partition function for
the random context vector ~vct , given by Zc =

P
w exp(h~vct ,~vwi).

c0 and ~vc0 represent a common context and its corresponding d
dimensional context vector based on syntax.
Using log linear model of (Mnih and Hinton 2007), we define the
probability of observing a word w from the random walk with cur-
rent context ct at time t as

Pr[w|ct] / exp(h~ct,~vwi) (1)

It is easy to show that such random walk under some reasonable as-
sumptions (Arora et al. 2016a) can give word-word co-occurrence
probabilities similar to empirical works like word2vec (Mikolov et
al. 2013) and GloVe (Pennington, Socher, and Manning 2014). To
account for frequent stop-words which occur more often regardless
of context and the common context related to document syntax, two
correction terms need be added: one based on p(w) and the other
on the common context vector ~vc0 in Equation (1). These terms
allow words with a low inner product with ~ct a chance to appear
either from p(w) if they are frequent or by the common context
~c0 if they have a large dot product with ~c0. Given a context vector
ct, the probability of a word w in document d being generated by
context ct is given by,

Pr[w|ct] = �p(w) + (1� �)
exp(h~c0t,~vwi)

Zc0t

(2)

where ~c0t = �~c0 + (1 � �) ~ct, h~c0,~cti = 0, � and � are scalar
hyper-parameters.
For generating a document from the above random walk-based la-
tent variable model, we consider the following assumptions:

1. Context vector (~vc0 ) does not change significantly while words
are generated from the random walk, as shown by (Arora, Liang,
and Ma 2017), except the jumps due to topic change.

2. Total number of topics in the entire corpus is K, which can be
determined by sparse dictionary learning as shown by (Arora et
al. 2016b) over word vectors ~vw.

3. Word vectors ~vw are uniformly distributed, thus making the par-
tition function Zc roughly the same in all directions for a given
context c emerging from each of the K topics.

For a document d, the likelihood of document is being generated
by the K contexts is given by:

p(d|{c1, c2 . . . cK}) /
KY

j=1

Y

{w2d}

p(w|cj) (3)

=
KY

j=1

Y

w2d

h
�p(w) + (1� �)

exp(h~vw,~vcj i)
Zj

i
(4)

Let, fw(cj) = log
h
�p(w) + (1� �)

exp(h~vw,~vcj i)
Zj

i
(5)

Here, p(w|cj) is the probability that word w is generated by context
cj , the value of which is determined by 1) The overall frequency

of word w in the corpus, i.e., prior probability (p(w)) and 2) The
relative frequency of w appearing with context j with respect to
other contexts (determined by ↵(w,j)).
Using simple algebra and treating p(w) as a constant, we can show
that r(fw(cj)) equals,

1
�p(w) + (1� �) exp(h~vw,~vcj i)/Zj

⇤ 1� �
Zj

exp(h~vw,~vcj i)~vw

(6)

Then, by using the Taylor expansion, we can show

fw(cj) ⇡ fw(cj = 0) +r(fw(cj = 0))T~vcj (7)

fw(cj) ⇡ constant+r(fw(cj = 0))T~vcj (8)
Therefore, the maximum likelihood estimator (MLE) for ~vcj on
the unit sphere (ignoring normalization) given a = 1��

�Zj
, is ap-

proximately 14

argmax
X

w2d

fw(cj) /
X

w2d

a
p(w) + a

~vw (9)

Thus, the MLE estimate is approximately a weighted average of
the word-vectors generated from context j in document d from
the random walk. We can get the overall context representation
~vcd of the document by simple concatenation over all K topics
i.e. ~vcd =

LK
j=1 ~vcj . Here,

L
represents the concatenation

operation. For a document if no word is generated from the context
cj then we can substitute the context vector ~vcj by a ~0 vector to
represent ~vcd in K ⇥ d dimensions. The embedding of a sentence
can be obtained by ~vcs =

P
{w2s}

a
p(w)+a~vw where a = 1��

�Zs
.

Relation to SIF model: (Arora, Liang, and Ma 2017) show sen-
tences can be represented as averaging of word vectors, under the
two assumptions:
• uniform distribution of word vectors ~vw which implies that the

partition function Zt is roughly the same in all directions for a
sentence.

• context vector ~vch remains constant while the words in the sen-
tence are emitted, implying the replacement of ~vch in the sen-
tences by ~vcs and partition function Zt by Zs.

However, the above assumptions do not hold true for a document
with multiple sentences where one can expect to have more fre-
quent jumps during a random walk due to topic change. 15 Instead
of assuming a single context for the whole document ch, we assume
that the total number of contexts over a given corpus is bounded by
the number of topics K (as shown by (Arora et al. 2016b)), and the
random walk can perform jumps to switch context from one con-
text to the rest of K � 1 contexts. The partition function remains
the same in all directions only for the words emerging from the
same context cj instead of the words coming from all the K con-
texts. Thus, our approach is a strict generalization of the sentence
embedding approach by (Arora, Liang, and Ma 2017) which is a
special case of K = 1.

Details of Textual Similarity Task

In this supplementary section, we present the details of the STS
tasks for each year. Each year, there are 4 to 6 STS tasks, as shown
in Table 6. Note that tasks with the same name in different years are

14 Note that argmaxc:k~ck=1C + h~c,~gi = ~g
k~gk for any constant C

15 It is trivial to assume that these jumps occur more frequently in
multi-sentence documents because of more number of topics.



different tasks in reality. We provide detailed results for each tasks
in STS 12 - 15 in Table 7. Our method outperforms all other meth-
ods from (Arora, Liang, and Ma 2017) and (Wieting et al. 2016) on
all 16 out of 22 tasks. Our method performs significantly better in
comparison to all unsupervised embedding methods. In addition,
P-SIF is very close to the best performance by supervised methods
on the rest of the datasets. Our method was also able to outperform
state of the art supervised averaging based Gated Recurrent Aver-
aging Network (GRAN) (Wieting and Gimpel 2017) on 11 datasets
shown in Table 7. Our results also outperform state of the art meth-
ods on many recent supervised embedding methods on the STS 16
task (See Table 8).

Experimental Details

Textual Similarity Task:

We use the PARAGRAM-SL999 (PSL) from (Wieting et al. 2015)
as word embeddings, obtained by training on the PPDB (Ganitke-
vitch, Van Durme, and Callison-Burch 2013) dataset 16. We use the
fixed weighting parameter a value of 10�3, and the word frequen-
cies p(w) are estimated from the common-crawl dataset. We tune
the number of contexts (K) to minimize the reconstruction loss
over the word-vectors. We fix the non-zero coefficient k = K/2,
for the SIF experiments. For the GMM-based partitioning of the
vocabulary, we tune the number of clusters’ parameter K through
a 5-fold cross validation.

1. Unsupervised: We used ST, avg-GloVe, tfidf-GloVe, and GloVe
+ WR as a baseline. ST denotes the skip-thought vectors by
(Kiros et al. 2015), avg-GloVe denotes the unweighted aver-
age of the GloVe Vectors by (Pennington, Socher, and Manning
2014) 17, and tfidf-Glove denotes the tf-idf weighted average
of GloVe vectors. We also compared our method with the SIF
weighting (W ) common component removal (R) GloVe vectors
(GloVe + WR) by (Arora, Liang, and Ma 2017). For STS 16, we
also compared our embedding with Skip-Thoughts (Kiros et al.
2015), BERT pretrained embedding average (Devlin et al. 2019)
, Universal Sentence Encoder (Cer et al. 2018) and Sent2Vec
(Pagliardini, Gupta, and Jaggi 2018) embeddings.

2. Semi-Supervised: We used avg-PSL, PSL + WR, and the avg-
PSL used the unweighted average of the PARAGRAM-SL999
(PSL) word vectors by (Wieting et al. 2015) as a baseline, ob-
tained by training on PPDB dataset(Ganitkevitch, Van Durme,
and Callison-Burch 2013). The word vectors are trained using
unlabeled data. Furthermore, sentence embeddings are obtained
from unweighted word vectors averaging. We also compared
our method with the SIF weighting (W) common component
removal (R) PSL word vectors (PSL + WR) by (Arora, Liang,
and Ma 2017).

3. Supervised: We compared our method with PP, PP-proj., DAN,
RNN, iRNN, LSTM (o.g), LSTM(no) and GRAN. All these
methods are initialized with PSL word vectors and then trained
on the PPDB dataset (Ganitkevitch, Van Durme, and Callison-
Burch 2013). PP(Wieting et al. 2016) is the average of word
vectors, while PP-proj is the average of word vectors followed
by a linear projection. The word vectors are updated during the
training. DAN denotes the deep averaging network of (Iyyer
et al. 2015). RNN is a Recurrent neural network, iRNN is the
identity activated Recurrent Neural Network based on identity-
initialized weight matrices. The LSTM is the version from

16 For a fair comparison with SIF we use PSL vectors instead
of unsupervised GloVe and Word2Vec vectors. 17 We used
the 300-dimensional word vectors that are publicly available at
http://nlp.stanford.edu/projects/glove/.

(Gers, Schraudolph, and Schmidhuber 2002), either with output
gates (denoted as LSTM (o.g.)) or without (denoted as LSTM
(no)). GRAN denotes state of the art supervised averaging based
Gated Recurrent Averaging Network from (Wieting and Gimpel
2017). For STS 16 we also compared our embedding with Tree-
LSTM (Tai, Socher, and Manning 2015) embedding.

Textual Classification Task:

We fix the document embeddings and only learn the classifier. We
learn word vector embeddings using Skip-Gram with a window
size of 10, Negative Sampling (SGNS) of 10, and minimum word
frequency of 20. We use 5-fold cross-validation on the F1 score
to tune hyperparameters. We use LinearSVM for multi-class clas-
sification and Logistic regression with the OneVsRest setting for
multi-label classification. We fix the number of dictionary elements
to either 40 or 20 (with Doc2vecC initialize word vectors) and non-
zero coefficient to k = K/2 during dictionary learning for all ex-
periments. We use the best parameter settings, as reported in all our
baselines to generate their results. We use 200 dimensions for tf-idf
weighted word-vector model, 400 for paragraph vector model, 80
topics and 400 dimensional vectors for TWE, NTSG, LTSG and 60
topics and 200 dimensional word vectors for SCDV (Mekala et al.
2017).

Baseline Details: We considered the following baselines: The
Bag-of-Words (BoW) model (Harris 1954), the Bag of Word Vec-
tor (BoWV) (Gupta et al. 2016) model, Sparse Composite Doc-
ument Vector (SCDV) (Mekala et al. 2017) 18 paragraph vector
models (Le and Mikolov 2014), Topical word embeddings (TWE-
1) (Liu et al. 2015), Neural Tensor Skip-Gram Model (NTSG-1
to NTSG-3) (Liu, Qiu, and Huang 2015), tf-idf weighted aver-
age word-vector model(Singh and Mukerjee 2015) and weighted
Bag of Concepts (weight-BoC) (Kim, Kim, and Cho 2017) where
we built document-topic vectors by counting the member words
in each topic, and Doc2VecC (Chen 2017) where averaging and
training of word vectors are done jointly. Moreover, we used SIF
(Arora, Liang, and Ma 2017) smooth inverse frequency weight with
common component removal from weighted average vectors as
a baseline. We also compared our results with other topic mod-
eling based document embedding methods such as WTM (Fu et
al. 2016), w2v-LDA (Nguyen et al. 2015), LDA (Chen and Liu
2014), TV+MeanWV (Li et al. 2016a)), LTSG (Law et al. 2017),
Gaussian-LDA (Das, Zaheer, and Dyer 2015), Topic2Vec (Niu et
al. 2015), Lda2Vec (Moody 2016), MvTM (Li et al. 2016b) and
BERT (Devlin et al. 2019). For BERT, we reported the results on
the unsupervised pre-trained (pr) model because of a fair compari-
son to our approach which is also unsupervised.

Class wise Performance on 20NewsGroup

We also reported the precision, recall, and micro-F1 results of sep-
arate 20 classes of the 20 NewsGroup dataset. We compared our
embedding (P-SIF) with Bag of Words, and SCDV embeddings.
In Table 9, P-SIF (Doc2VecC) (20 partitions) embeddings outper-
forms SCDV (60 partitions) on 18 out of the 20 classes.

Other Supervised Tasks

We also considered three out of domain supervised tasks: the SICK
similarity task, the SICK entailment task, and the Stanford Senti-
ment Treebank (SST) binary classification task by (Socher et al.
2013). We used the setup similar to (Wieting et al. 2016) and
(Arora, Liang, and Ma 2017) for a fair comparison, including the
linear projection maps which take the embedding into 2400 di-
mensions (same as skip-thought vectors), and is learned during the

18 https://github.com/dheeraj7596/SCDV



Table 6: The STS tasks by year. Tasks with the same name in different years are different tasks

STS12 STS13 STS14 STS15 STS16

MSRpar headline deft forum anwsers-forums headlines
MSRvid OnWN deft news answers-students plagiarism
SMT-eur FNWN headline belief posteditng
OnWN SMT images headline answer-answer

SMT-news OnWN images question-question
tweet news

Table 7: Experimental results (Pearson’s r ⇥ 100) on textual similarity tasks. The highest score in each row is in bold. The
methods can be supervised (denoted as Su.), semi-supervised (Se.), or unsupervised (Un.). See the main text for description
of the methods. Many results are collected from (Wieting et al. 2016) and (Wieting and Gimpel 2017) (GRAN) except the
tfidf-GloVe and our representation.

TaskType Supervised UnSupervised Semi

Supervised

P-

SIF

Tasks PP PP

proj

DAN RNN iRNN LSTM

(no)

LSTM

(o.g.)

GRAN ST avg

Glove

tfidf

Glove

avg

PSL

Glove

+WR

PSL

+WR

P-SIF

+PSL

MSRpar 42.6 43.7 40.3 18.6 43.4 16.1 9.3 47.7 16.8 47.7 50.3 41.6 35.6 43.3 52.4

MSRvid 74.5 74.0 70.0 66.5 73.4 71.3 71.3 85.2 41.7 63.9 77.9 60.0 83.8 84.1 85.6

SMT-eur 47.3 49.4 43.8 40.9 47.1 41.8 44.3 49.3 35.2 46.0 54.7 42.4 49.9 44.8 58.7

OnWN 70.6 70.1 65.9 63.1 70.1 65.2 56.4 71.5 29.7 55.1 64.7 63.0 66.2 71.8 72.2

SMT-news 58.4 62.8 60.0 51.3 58.1 60.8 51.0 58.7 30.8 49.6 45.7 57.0 45.6 53.6 59.5
STS12 58.7 60.0 56.0 48.1 58.4 51.0 46.4 62.5 30.8 52.5 58.7 52.8 56.2 59.5 65.7

headline 72.4 72.6 71.2 59.5 72.8 57.4 48.5 76.1 34.6 63.8 69.2 68.8 69.2 74.1 75.7
OnWN 67.7 68.0 64.1 54.6 69.4 68.5 50.4 81.4 10.0 49.0 72.9 48.0 82.8 82.0 84.4

FNWN 43.9 46.8 43.1 30.9 45.3 24.7 38.4 55.6 30.4 34.2 36.6 37.9 39.4 52.4 54.8
SMT 39.2 39.8 38.3 33.8 39.4 30.1 28.8 40.3 24.3 22.3 29.6 31.0 37.9 38.5 41.0

STS13 55.8 56.8 54.2 44.7 56.7 45.2 41.5 63.4 24.8 42.3 52.1 46.4 56.6 61.8 64.0

deft forum 48.7 51.1 49.0 41.5 49.0 44.2 46.1 55.7 12.9 27.1 37.5 37.2 41.2 51.4 53.2
deft news 73.1 72.2 71.7 53.7 72.4 52.8 39.1 77.1 23.5 68.0 68.7 67.0 69.4 72.6 75.2
headline 69.7 70.8 69.2 57.5 70.2 57.5 50.9 72.8 37.8 59.5 63.7 65.3 64.7 70.1 70.2
images 78.5 78.1 76.9 67.6 78.2 68.5 62.9 85.8 51.2 61.0 72.5 62.0 82.6 84.8 84.8
OnWN 78.8 79.5 75.7 67.7 78.8 76.9 61.7 85.1 23.3 58.4 75.2 61.1 82.8 84.5 88.1

tweet news 76.4 75.8 74.2 58.0 76.9 58.7 48.2 78.7 39.9 51.2 65.1 64.7 70.1 77.5 77.5
STS14 70.9 71.3 69.5 57.7 70.9 59.8 51.5 75.8 31.4 54.2 63.8 59.5 68.5 73.5 74.8

ans-forum 68.3 65.1 62.6 32.8 67.4 51.9 50.7 73.1 36.1 30.5 45.6 38.8 63.9 70.1 70.7
ans-student 78.2 77.8 78.1 64.7 78.2 71.5 55.7 72.9 33.0 63.0 63.9 69.2 70.4 75.9 79.6

belief 76.2 75.4 72.0 51.9 75.9 61.7 52.6 78 24.6 40.5 49.5 53.2 71.8 75.3 75.3
headline 74.8 75.2 73.5 65.3 75.1 64.0 56.6 78.6 43.6 61.8 70.9 69.0 70.7 75.9 76.8
images 81.4 80.3 77.5 71.4 81.1 70.4 64.2 85.8 17.7 67.5 72.9 69.9 81.5 84.1 84.1
STS15 75.8 74.8 72.7 57.2 75.6 63.9 56.0 77.7 31.0 52.7 60.6 60.0 71.7 76.3 77.3

SICK14 71.6 71.6 70.7 61.2 71.2 63.9 59.0 72.9 49.8 65.9 69.4 66.4 72.2 72.9 73.4

Twitter15 52.9 52.8 53.7 45.1 52.9 47.6 36.1 50.2 24.7 30.3 33.8 36.3 48.0 49.0 54.9

Table 8: Experimental results (Pearson’s r ⇥ 100) on textual similarity tasks on STS 16. The highest score in each row is in
bold.

Tasks Skip

thoughts

LSTM Tree

LSTM

Sent2Vec Doc2Vec GloVe

Avg

GloVe

tf-idf

PSL

Avg

PSL

tf-idf

GloVe

+WR

PSL

+WR

P-SIF

+PSL

headlines 51.02 75.7 74.08 75.06 69.16 49.66 52.76 70.86 72.24 72.86 74.48 75.6

plagiarism 66.71 71.73 67.62 80.06 80.6 59.84 61.48 77.96 80.06 79.46 79.74 81.6

post editing 69.95 72.31 70.65 82.85 82.85 59.89 62.34 80.41 81.45 82.03 82.05 83.7

ans-ans 28.63 44.17 52.27 57.73 41.12 19.8 22.47 38.5 41.56 58.15 59.98 60.2

ques-ques 40.46 60.69 55.26 73.03 73.03 46.84 56.58 48.69 59.1 69.36 66.41 67.2
STS16 51.4 64.9 64.0 73.7 69.4 47.2 51.1 63.3 66.9 72.4 72.5 73.7



Table 9: Class performnce on the 20newsgroup dataset. P-SIF represents our embedding with 40 partitions. P-SIF (Doc2VecC)
represents our embeddings initialized with Doc2VecC trained word-vectors with 20 partitions.

BoW SCDV P-SIF P-SIF (Doc2VecC)
Class Name Pre. Rec. F-mes Pre. Rec. F-mes Pre. Rec. F-mes Pre. Rec. F-mes

alt.atheism 67.8 72.1 69.8 80.2 79.5 79.8 83.3 80.2 81.72 83 79.9 81.4
comp.graphics 67.1 73.5 70.1 75.3 77.4 76.3 76.6 78.1 77.3 76.8 79.2 77.9

comp.os.ms-windows.misc 77.1 66.5 71.4 78.6 77.2 77.8 76.3 77.7 76.9 77.2 78.2 77.7
comp.sys.ibm.pc.hardware 62.8 72.4 67.2 75.6 73.5 74.5 73.4 74.5 73.9 71.1 74.2 72.6

comp.sys.mac.hardware 77.4 78.2 77.8 83.4 85.5 84.4 87.1 84.4 85.7 87.5 87.5 87.5

comp.windows.x 83.2 73.2 77.8 87.6 78.6 82.8 89.3 78 83.2 88.8 78.5 83.3

misc.forsale 81.3 88.2 84.6 81.4 85.9 83.5 82.7 88 85.2 82.4 86.4 84.3
rec.autos 80.7 82.8 81.7 91.2 90.6 90.9 93 90.1 91.5 92.8 90.7 91.7

rec.motorcycles 92.3 87.9 90.0 95.4 95.7 95.5 93.6 95.5 94.5 97 96.5 96.7

rec.sport.baseball 89.8 89.2 89.5 93.2 94.7 93.9 93.3 95.2 94.2 95.2 95.7 95.4

rec.sport.hockey 93.3 93.7 93.5 96.3 99.2 97.7 95.6 98.5 97.0 96.8 98.8 97.7

sci.crypt 92.2 86.1 89.0 92.5 94.7 93.5 89.8 93.2 91.47 93.4 96.7 95.0

sci.electronics 70.9 73.3 72.08 74.6 74.9 74.7 79.6 78.6 79.1 78 79.3 78.6
sci.med 79.3 81.3 80.2 91.3 88.4 89.8 91.9 88.6 90.2 92.7 89.9 91.2

sci.space 90.2 88.3 89.2 88.5 93.8 91.07 89.4 94 91.6 90.7 94.4 92.5

soc.religion.christian 77.3 87.9 82.2 83.3 92.3 87.5 84 94.3 88.8 86 92.5 89.1

talk.politics.guns 71.7 85.7 78.0 72.7 90.6 80.6 73.1 91.2 81.1 77.3 89.8 83.1

talk.politics.mideast 91.7 76.9 83.6 96.2 95.4 95.8 97 94.5 95.7 97.5 94.2 95.8

talk.politics.misc 71.7 56.5 63.2 80.9 59.7 68.7 81 59 68.2 82 62 70.6

talk.religion.misc 63.2 55.4 59.04 73.5 57.2 64.3 72.2 59 64.9 67.4 62.4 64.8

Table 10: Results on similarity, entailment, and sentiment tasks. The row for similarity (SICK) shows Pearson’s r ⇥ 100 and
the last two rows show accuracy. The highest score in each row is in bold. Results in Column 2 to 6 are collected from (Wieting
et al. 2016), and those in Column 7 for skip-thought are from (Kiros et al. 2015), Column 8 for PSL + WR are from (Arora,
Liang, and Ma 2017).

Tasks PP DAN RNN LSTM

(no)

LSTM

(o.g.)

skip

thought

PSL

+WR

P-SIF

+PSL

similarity (SICK) 84.9 85.96 73.13 85.45 83.4 85.8 86.3 87.6

entailment (SICK) 83.1 84.5 76.4 83.2 82.0 - 84.6 85.5

sentiment (SST) 79.4 83.4 86.5 86.6 89.2 - 82.2 86.4

training. We compared our method to PP, DAN, RNN, LSTM, skip-
thoughts and other baselines. Detailed results are in Table 10.

Results and Analysis. Our method (P-SIF) obtains a better per-
formance compared to PSL + WR on all the three tasks similar-
ity, entailment, and sentiment. We obtained the best results for two
of the supervised tasks, although many of these methods (DAN,
RNN, LSTM) are trained with supervision. Furthermore, the skip
thought vectors use a higher dimension of 2400 instead of 300 di-
mensions (which we projected to 2400 for a fair comparison). Our
method wasn’t able to outperform the sentiment task compared to
supervised tasks because a) due to the antonym problem word-
vectors capture the sentimental meaning of words and b) in our
weighted average scheme, we didn’t assign more weights to senti-
ment words such as ‘not’, ‘good’, ‘bad’, there may be some impor-
tant sentiment words which are down-weighted by the SIF weight-
ing scheme. However, we outperform PSL + WR by a significant
margin and have a less performance gap with the best supervised
approach.

Proof: Kernels meet Embeddings

1. K1(DA, DB) represents document similarity between the
documents represented by average word vectors dx =

P
i ~v

x
i

Proof:

~dv
A
=

1
n

nX

i=1

~vwA
i

(10)

~dv
A
=

1
m

mX

j=1

~vwB
j

(11)

K1(DA, DB) = h ~dv
A
· ~dv

B
i (12)

By substituting values from 10 and 11 to 12, we will get

K1(DA, DB) = h 1
n

nX

i=1

~vwA
i
· 1
m

mX

j=1

~vwB
j
i (13)

K1(DA, DB) =
1

nm
h

nX

i=1

~vwA
i
·

mX

j=1

~vwB
j
i (14)

Using the distributive property of dot product

h
nX

i=1

~vwA
i
·

mX

j=1

~vwB
j
i =

nX

i=1

mX

j=1

h~vwA
i
· ~vwB

j
i (15)

By substituting 15 in 14, we will get



K1(DA, DB) =
1

nm

nX

i=1

mX

j=1

h~vwA
i
· ~vwB

j
i (16)

2. K2(DA, DB) represents the document similarity between the
documents represented by topical word vectors (Liu, Qiu, and
Huang 2015)

Proof:

~dv
A
=

1
n

nX

i=1

~tvwA
i
=

nX

i=1

↵wA
i
� ~vwA

i
(17)

~dv
B
=

1
m

mX

j=1

~tvwB
i

=
mX

j=1

↵wB
i
� ~vwB

i
(18)

K2(DA, DB) = h ~dv
A
· ~dv

B
i (19)

By substituting values from 17 and 18 to 19, we will get

K2(DA, DB) =
1

nm
h

nX

i=1

~tvwA
i
·

mX

j=1

~tvwB
j
i (20)

Using the distributive property of dot product

K2(DA, DB) =
1

nm

nX

i=1

mX

j=1

h~tvwA
i
· ~tvwB

j
i (21)

K2(DA, DB) =
1

nm

nX

i=1

mX

j=1

D�
↵wA

i
� ~vwA

i

�
·
�
↵wB

i
� ~vwB

i

�E

(22)
Using the distributive and scalar multiplication property of dot
product

D�
↵wA

i
� ~vwA

i

�
·
�
↵wB

i
� ~vwB

i

�E
= h↵wA ·↵wB i+h~vwA

i
·~vwB

i
i

(23)
Since, twA = ↵wA and twB = ↵wB

D�
↵wA

i
� ~vwA

i

�
·
�
↵wB

i
� ~vwB

i

�E
= htwA ·twB i+h~vwA

i
·~vwB

i
i

(24)
By substituting 24 in 22, we will get

K2(DA, DB) =
1

nm

nX

i=1

mX

j=1

h~vwA
i
·~vwB

j
i+h~twA

i
·~twB

j
i (25)

3. K3(DA, DB) represents the document similarity between
the documents represented by partition average word vectors
(P-SIF)

Proof:

~dv
A
=

1
n

nX

i=1

~tvwA
i
=

nX

i=1

KM

k=1

↵wA
i ,k~vwA

i
(26)

~dv
B
=

1
m

mX

j=1

~tvwB
i

=
mX

j=1

KM

k=1

↵wB
j ,k~vwB

i
(27)

K3(DA, DB) = h ~dv
A
· ~dv

B
i (28)

By substituting values from 26 and 27 in 28, we will get

K3(DA, DB) =
1

nm
h

nX

i=1

~tvwA
i
·

mX

j=1

~tvwB
j
i (29)

Using the distributive property of dot product

K3(DA, DB) =
1

nm

nX

i=1

mX

j=1

h~tvwA
i
· ~tvwB

j
i (30)

=
1

nm

nX

i=1

mX

j=1

*
� KM

k=1

↵wA
i ,k~vwA

i

�
·
� KM

k=1

↵wB
j ,k~vwB

i

�
+

(31)

Using distributive and scalar multiplication property of dot prod-
uct

*
� KM

k=1

↵wA
i ,k~vwA

i

�
·
� KM

k=1

↵wB
j ,k~vwB

j

�
+

=
� KX

k=1

(↵wA
i ,k · ↵wB

j ,k)
�
⇥ h~vwA

i
· ~vwB

i
i

(32)

Since, twA,k = ↵wA,k and twB ,k = ↵wB ,k

*
� KM

k=1

↵wA,k~vwA
i

�
·
� KM

k=1

↵wB ,k~vwB
i

�
+

=
� KX

k=1

(twA
i ,k · twB

j ,k)
�
⇥ h~vwA

i
· ~vwB

i
i

(33)

*
� KM

k=1

↵wA,k~vwA
i

�
·
� KM

k=1

↵wB ,k~vwB
i

�
+

=
� KX

k=1

twA
i ,k · twB

j ,k

�
⇥ h~vwA

i
· ~vwB

i
i

(34)

From the definition of the dot product of vectors,

*
� KM

k=1

↵wA,k~vwA
i

�
·
� KM

k=1

↵wB ,k~vwB
i

�
+

= h~twA
i
· ~twB

j
i ⇥ h~vwA

i
· ~vwB

j
i

(35)

By subatituting 35 in 31, we will get

K3(DA, DB) =
1

nm

nX

i=1

mX

j=1

h~vwA
i
·~vwB

j
i⇥h~twA

i
·~twB

j
i (36)

4. K4(DA, DB) represents the document similarity between the
documents represented by the relaxed word mover distance
(Kusner et al. 2015) when words of DA are matched to DB

Proof: From the definition of the relaxed word mover distance
in (Kusner et al. 2015). Relaxed word mover maps each word



wA
i of document DA to the closest word wB

j of document DB .

Since, word wB
j of document DB is closer to word wA

i of doc-
ument DA, we will have

wB
j = argmax

wB
j

h~vwA
i
· ~vwB

j
i (37)

Therefore, similarity contribution K(i,j) from word wA
i of doc-

ument DA is given by:

K(i,j) =
1
n
max
wB

j

h~vwA
i
· ~vwB

j
i (38)

Total similarity contribution from all the n words of the docu-
ment dA:

K4(DA, DB) =
1
n

nX

i=1

K(i,j) =
1
n

nX

i=1

max
wB

j

h~vwA
i
· ~vwB

j
i

(39)
We can write maxwB

j
as maxj , thus finally

K4(DA, DB) =
1
n

nX

i=1

max
j

h~vwA
i
· ~vwB

j
i (40)

Qualitative Example: Document Similarity

Let’s consider a corpus (C) with N documents with the corre-
sponding most frequent vocabulary (V ). Figure 3 represents the
word-vectors space V , where similar meaning words are closer.
We can apply sparse coding and partition the words-vector space
into five (total topics K = 5) topic vector spaces. Some words are
polysemic and belong to multiple topics with some proportion, as
shown in Figure 3. For example, words such as baby, person, dog

and kangaroo, belong to multiple topics with a significant propor-
tion. Words and corresponding vectors in these topic vector spaces
are represented by topic numbers in the subscript. Table 11 shows
an example pair from the STS Task 2012 MSRVid dataset and the
corresponding SIF (averaging) and P-SIF (partition averaging)
representation vectors. We can see that in the SIF representation,
we are averaging words vectors which semantically have differ-
ent meanings. The document is represented in the same d dimen-
sional word-vectors space. Overall, SIF represents the document
as a single point in the vector space and does not take account
of different semantic meanings of the topics. Whereas, in the P-
SIF representation, we treat the five different semantic topics dis-
tinctly. Words belonging to different semantic topics are separated
by concatenation (�) as they represent different meanings, whereas
words coming from the same topic are averaged as they represent
the same meaning. The final document vector ~vdn has more rep-
resentational power as it is represented in a higher 5 ⇥ d dimen-
sional vector space. Thus, partitioned averaging with topic weight-
ing is important for representing documents. Empirically, P-SIF
assigned a lower score of 0.16 (rescaled to a 0-1 scale) for sen-
tences (d1n,d2n) where the ground truth is 0.15 (rescaled to a 0-1
scale), whereas SIF gave similarity score of 0.57 (0-1 scale), far-
ther than the ground score. Thus, we obtain a relative improvement
of 98% in the error difference from the ground truth. Here, the
simple averaging-based embedding of d1n and d2n, brings the doc-
ument representations closer. But partitioned based averaging, P-
SIF, projects the documents farther in a higher-dimensional space.

Figure 3: Words in different topics are represented by differ-
ent subscripts and separated by hyperplanes. Bold represents
words from example documents.

Qualitative Results: Similarity task

Table 12 represents successful example pair from STS 2012
MSRvid dataset where P-SIF assigns similarity scores closer to
ground truth than SIF. Table 13 represents the failed example pairs
from STS 2012 MSRvid dataset where SIF assigns a similarity
score closer to the ground truth than P-SIF. We now introduce the
header notations used in the Table 12 and 13 in details.
• GT: represents the given ground truth similarity score in a range

of 0-5.
• NGT: represents the normalized ground truth similarity score.

NGT is obtained by dividing the GT score by 5 so that it is in a
range of 0-1.

• SIFsc: represents the SIF embedding similarity score in a range
of 0-1.

• P-SIFsc: represents the P-SIF embedding similarity score in a
range of 0-5.

• SIFerr: represents absolute error kSIFsc�NGTk between nor-
malized ground truth similarity score and the SIF embedding
similarity score.

• P-SIFerr: represents the absolute error kP-SIFsc �NGTk be-
tween the ground truth similarity score and the P-SIF embed-
ding similarity score.

• Differr: represents absolute difference between SIFerr and P-
SIFerr . Examples where P-SIF performs better Differr = P-
SIFerr - SIFerr (used in Table 12). Examples where SIF per-
forms better Differr = SIFerr - P-SIFerr (used in Table 13)

• Relerr: represents relative difference between SIFerr and P-
SIFerr . Examples where P-SIF performs better Relerr =
Differr
SIFerr

(used in Table 12). Examples where SIF performs bet-
ter Relerr = Differr

P-SIFerr
(used in Table 13)

Figure 4 shows the code flow architecture of our proposed P-SIF
embeddings.



Table 11: STS Task 2012 MSRVid dataset similarity example pair. Here, P-SIF assigns a score of 0.16 (rescaled to a 0-1 scale)
to sentences (d1n,d1n), where the ground truth of 0.15 (0-1 scale), whereas SIF assigns a similarity score of 0.57 (rescaled to a
0-1 scale). Thus, we obtain a relative improvement of 98% in the error difference. Here, � represents concatenation. ~vzero is
the zero padding vector.

Document 1 (d1n) Document 2 (d2n) Score
Doc A man is riding a motorcycle A woman is riding a horse 0.15
SIF ~vman2 + ~vriding3

+ ~vmotorcycle4 ~vwoman1 + ~vriding3
+ ~vhorse5 0.57

P-SIF ~vzero1 � ~vman2 � ~vriding3
� ~vmotorcycle4 � ~vzero5 ~vwomen1 � ~vzero2 � ~vriding3

� ~vzero4 � ~vhorse5 0.16

Table 12: STS 2012 MSRVid example where the P-SIF scores were closer to the ground truth, whereas SIF scores were more
away from the ground truth

sentence1 sentence2 GT NGT SIFsc P-SIFsc SIFerr P-SIFerr Differr Relerr
People are playing baseball . The cricket player hit the ball . 0.5 0.1 0.2928 0.0973 0.1928 0.0027 0.1901 0.986
A woman is carrying a boy . A woman is carrying her baby . 2.333 0.4666 0.5743 0.4683 0.1077 0.0017 0.106 0.9843

A man is riding a motorcycle . A woman is riding a horse . 0.75 0.15 0.5655 0.157 0.4155 0.007 0.4085 0.9833
A woman slices a lemon . A man is talking into a microphone . 0 0 -0.1101 -0.0027 0.1101 0.0027 0.1074 0.9754

A man is hugging someone . A man is taking a picture . 0.4 0.08 0.2021 0.0767 0.1221 0.0033 0.1188 0.9731
A woman is dancing . A woman plays the clarinet . 0.8 0.16 0.3539 0.1653 0.1939 0.0053 0.1886 0.9727

A train is moving . A man is doing yoga . 0 0 0.1674 -0.0051 0.1674 0.0051 0.1623 0.9695
Runners race around a track . Runners compete in a race . 3.2 0.64 0.7653 0.6438 0.1253 0.0038 0.1214 0.9694

A man is driving a car . A man is riding a horse . 1.2 0.24 0.3584 0.2443 0.1184 0.0043 0.114 0.9636
A man is playing a guitar . A woman is riding a horse . 0.5 0.1 -0.0208 0.0955 0.1208 0.0045 0.1163 0.9629
A man is riding on a horse . A girl is riding a horse . 2.6 0.52 0.6933 0.5082 0.1733 0.0118 0.1615 0.9319

A woman is deboning a fish . A man catches a fish . 1.25 0.25 0.4538 0.2336 0.2038 0.0164 0.1875 0.9196
A man is playing a guitar . A man is eating pasta . 0.533 0.1066 -0.0158 0.0962 0.1224 0.0104 0.112 0.915

A woman is dancing . A man is eating . 0.143 0.0286 -0.1001 0.0412 0.1287 0.0126 0.1161 0.9023
The ballerina is dancing . A man is dancing . 1.75 0.35 0.512 0.3317 0.162 0.0183 0.1437 0.8871

A woman plays the guitar . A man sings and plays the guitar . 1.75 0.35 0.5036 0.3683 0.1536 0.0183 0.1353 0.8807
A girl is styling her hair . A girl is brushing her hair . 2.5 0.5 0.7192 0.5303 0.2192 0.0303 0.1889 0.8618

A guy is playing hackysack A man is playing a key-board . 1 0.2 0.3718 0.2268 0.1718 0.0268 0.145 0.8441
A man is riding a bicycle . A monkey is riding a bike . 2 0.4 0.6891 0.4614 0.2891 0.0614 0.2277 0.7876

A woman is swimming underwater . A man is slicing some carrots . 0 0 -0.2158 -0.0562 0.2158 0.0562 0.1596 0.7397
A plane is landing . A animated airplane is landing . 2.8 0.56 0.801 0.6338 0.241 0.0738 0.1672 0.6937

The missile exploded . A rocket exploded . 3.2 0.64 0.8157 0.6961 0.1757 0.0561 0.1196 0.6806
A woman is peeling a potato . A woman is peeling an apple . 2 0.4 0.6938 0.5482 0.2938 0.1482 0.1456 0.4956

A woman is writing . A woman is swimming . 0.5 0.1 0.3595 0.2334 0.2595 0.1334 0.1261 0.4859
A man is riding a bike . A man is riding on a horse . 2 0.4 0.6781 0.564 0.2781 0.164 0.1142 0.4105
A panda is climbing . A man is climbing a rope . 1.6 0.32 0.4274 0.3131 0.1074 0.0069 0.1005 0.9361

A man is shooting a gun . A man is spitting . 0 0 0.2348 0.1305 0.2348 0.1305 0.1043 0.444

Table 13: STS 2012 MSRVid examples where the P-SIF score were far away from the ground truth, whereas the SIF scores
were closer to the actual ground truth

sentence1 sentence2 GT NGT SIFsc P-SIFsc SIFerr P-SIFerr Differr Relerr
takes off his sunglasses . A boy is screaming . 0.5 0.1 0.1971 0.3944 0.0971 0.2944 0.1973 0.6703

The rhino grazed on the grass . A rhino is grazing in a field . 4 0.8 0.7275 0.538 0.0725 0.262 0.1895 0.7234
An animal is biting a persons finger . A slow loris is biting a persons finger . 3 0.6 0.6018 0.7702 0.0018 0.1702 0.1684 0.9892

Animals are playing in water . Two men are playing ping pong . 0 0 0.0706 0.2238 0.0706 0.2238 0.1532 0.6846
Someone is feeding a animal . Someone is playing a piano . 0 0 -0.0037 0.1546 0.0037 0.1546 0.1509 0.976

The lady sliced a tomatoe . Someone is cutting a tomato . 4 0.8 0.693 0.5591 0.107 0.2409 0.1339 0.5559
The lady peeled the potatoe . A woman is peeling a potato . 4.75 0.95 0.7167 0.5925 0.2333 0.3575 0.1242 0.3474
A man is slicing something . A man is slicing a bun . 3 0.6 0.5976 0.4814 0.0024 0.1186 0.1162 0.9802

A boy is crawling into a dog house . A boy is playing a wooden flute . 0.75 0.15 0.1481 0.2674 0.0019 0.1174 0.1155 0.9839
A man and woman are talking . A man and woman is eating . 1.6 0.32 0.3574 0.4711 0.0374 0.1511 0.1137 0.7527

A man is cutting a potato . A woman plays an electric guitar . 0.083 0.0166 -0.1007 -0.2128 0.1173 0.2294 0.112 0.4884
A person is cutting a meat . A person riding a mechanical bull 0 0 0.0152 0.1242 0.0152 0.1242 0.1091 0.8778

A woman is playing the flute . A man is playing the guitar . 1 0.2 0.1942 0.0876 0.0058 0.1124 0.1065 0.948



Figure 4: Overview of code flow architecture of P-SIF.


