

Neural models are good at individual predictions. But they can be *inconsistent* across examples. To model (in)consistencies, we present:

- . A mechanism to measure output inconsistency w.r.t. to declaratively specified invariants.
- 2. A framework that compiles domain knowledge stated in first-order logic to loss components, mitigating inconsistency.
- 3. An analysis of the impact of consistencies and predictive accuracy, showing that accuracy alone is not sufficient.

Errors & Metrics

Suppose we have 3 sentences: **P**: John is on a train to Berlin. H: John is traveling to Berlin. **Z**: John is having lunch in Berlin. In NLI, we know that **P** entails **H** and **H** contradicts **Z**.

What about **P** and **Z**? We can write a simple rule: if **P** entails **H**, and **H** contradicts **Z**, then **P** contradicts **Z**.

Generally, we can express such domain knowledge in first-order logic: $\forall x \in D,$ $L(x) \to R(x)$

where x: a collection of examples.

To measure errors, we define two metrics: Global violation rate ρ

#instances with violation #instances where LHS holds

A Logic-Driven Framework for $C \Delta nsistency$ of Neural Models Tao Li, Vivek Gupta, Maitrey Mehta, Vivek Srikumar

L(x)

Case Study: NLI

Annotation Consistency (*i.e.* Accuracy) model prediction should agree with annotation. $\forall (P,H), Y^* \in D, \quad \top \to Y^*(P,H)$ where Y^* : the ground truth label.

Mirror Consistency

P contradicts H iff. H also contradicts P. $\forall (P,H) \in D, \quad C(P,H) \leftrightarrow C(H,P)$ where C: the Contradiction label. A BERT model has $\tau \approx 60\%$ violation while random guess has *τ*≈67% !!

Transitivity Consistency

label transitivity with any sentence triple. $\forall (P, H, Z) \in D, \quad (E(P, H) \land E(H, Z) \to E(P, Z))$ $\wedge \left(E\left(P,H\right) \wedge C\left(H,Z\right) \to C\left(P,Z\right) \right)$ $\wedge \left(N\left(P,H\right) \wedge E\left(H,Z\right) \rightarrow \neg C\left(P,Z\right) \right)$ $\wedge \left(N\left(P,H\right) \wedge C\left(H,Z\right) \rightarrow \neg E\left(P,Z\right) \right)$ where E : the *Entailment* label, N : the *Neutral* label. **Relaxing Logic**

The question is how to incorporate these non-differentiable rules in an end-to-end training framework. *Triangular norm* (t-norm \triangle) defines a systematic way to relax logic. We use the *product* t-norm.

$\neg A$	1 - a	We wa
12	ah a	be true
$A \land D$	u_{0} $\cdot (1 b)$	want t
$A \to B$	$\min\left(1,\frac{b}{a}\right)$	be ma

- . Consistencies apply to all examples, forming a huge conjunction, which becomes summation in log space. 2. Particularly, the Annotation consistency becomes
- cross-entropy loss.

Labeled & Unlabeled Data

We use SNLI, MultiNLI, and MSCOCO captions.

	Labeled	(M)	Wirror unlabe (U)
SNLI			
MultiNLI			
MSCOCO			

From MSCOCO, we sampled 100k unlabeled sentence triples for training, and another 100k for evaluation.

- ant the invariants to e. Equivalently, we their relaxations to aximally true.

eled Transitivity **(T**)

With our inconsistency losses, the BERT models become significantly more consistent. Meanwhile, the accuracies (i.e. annotation consistency) remain on par [-0.2, +0.2] across different settings.

With 100% labeled data, BERT model has 90+ accuracy but terrible consistencies. With 1% labeled data, our framework yields more consistent models than training unconstrainedly with full data. *i.e.* Accuracy and consistency are complementary metrics.

Training with mirror consistency does not guarantee better transitivity consistency (the red curve above).

Conclusions

- tions using the *product* t-norm (\triangle) .
- 2. No extra trainable parameters are required.
- transitivity consistencies.

For details, please refer to our paper.

Thanks for stopping by!

Experiments

Transitivity Inconsistency $\rho(\%)$ SNLI+MultiNLI • — w/ M w/ M,U → w/ M,U,T Transitivity Inconsistency τ (%) 100 20 Percentage of train set(%)

1. Our framework introduces a general way to design loss func-

3. Models are both accurate and consistent at the same time. 4. Standard evaluations focus on accuracy but not on the mirror/

