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Key Points Case Study: NLI
Neural models are good at individual predictions. But 
they can be inconsistent across examples. To model 
(in)consistencies, we present:

Errors & Metrics

Global violation rate ρ

Conditional violation rate τ

Generally, we can express such domain knowledge in 
�rst-order logic:

Suppose we have 3 sentences: 
        P: John is on a train to Berlin.
      H: John is traveling to Berlin.
      Z: John is having lunch in Berlin.
In NLI, we know that P entails H and H contradicts Z.
 
What about P and Z ?  We can write a simple rule:
                   if P entails H, and H contradicts Z,
                           then P contradicts Z.

where        : the ground truth label.
Mirror Consistency
  P contradicts H iff. H also contradicts P.

Transitivity Consistency
  label transitivity with any sentence triple.

where      : the Entailment label,       : the Neutral label.

Annotation Consistency (i.e. Accuracy)
  model prediction should agree with annotation.

Triangular norm (t-norm        ) de�nes a systematic 
way to relax logic. We use the product t-norm.

Consistencies apply to all examples, forming a huge con-
junction, which becomes summation in log space.
Particularly, the Annotation consistency becomes 
cross-entropy loss.

We use SNLI, MultiNLI, and MSCOCO captions.

SNLI
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MSCOCO
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Transitivity
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From MSCOCO, we sampled 100k unlabeled sentence triples for 
training, and another 100k for evaluation.
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Our framework introduces a general way to design loss func-
tions using the product t-norm (       ).
No extra trainable parameters are required.
Models are both accurate and consistent at the same time.
Standard evaluations focus on accuracy but not on the mirror/
transitivity consistencies.

Thanks for stopping by!

Labeled & Unlabeled Data

Experiments
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Conclusions

We use the derived losses to �netune BERT base.

For details, please refer to our paper.

    where      : a collection of examples.

To measure errors, we de�ne two metrics:

where      : the Contradiction label.
A BERT model has τ≈60% violation while random 
guess has τ≈67% !!

Relaxing Logic
The question is how to incorporate these non-di�erentiable 
rules in an end-to-end training framework.

With our inconsistency losses, the BERT models become signi�cantly 
more consistent. Meanwhile, the accuracies (i.e. annotation consisten-
cy) remain on par [-0.2, +0.2] across di�erent settings.

With 100% labeled data, BERT model has 90+ accuracy but terrible 
consistencies. With 1% labeled data, our framework yields more 
consistent models than training unconstrainedly with full data. 
    i.e. Accuracy and consistency are complementary metrics.

Training with mirror consistency does not guarantee better transi-
tivity consistency (the red curve above).

A mechanism to measure output inconsistency 
w.r.t. to declaratively speci�ed invariants.
A framework that compiles domain knowledge 
stated in �rst-order logic to loss components, miti-
gating inconsistency.
An analysis of the impact of consistencies and pre-
dictive accuracy, showing that accuracy alone is 
not su�cient.
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We want the invariants to 
be true. Equivalently, we 
want their relaxations to 
be maximally true.
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