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Neural models are good at individual predictions. But =~ Annotation Consistency (i.e. Accuracy) We use the derived losses to finetune BERT base.
they can be inconsistent across examples. To model model prediction should agree with annotation. Mirror Inconsistency (%) Transitivity Inconsistency p(%)
(in)consistencies, we present: V(P H),Y"eD, T—Y'(PH) ®r SNLI+MultiNLI  -=  w/ M \ SNLI+MultiNLI = —w/ M
1. A mechanism to measure output inconsistency _ Where Y :the ground truth label. 30 — 48 BN - WM w/ MUT J1e
' . . . . Mirror Consistency
w.r.t. to declaratively spegﬁed mvgnants. P contradicts H i H also contradicts P 20l | 4
2. A framework that complles domain knowledge N W(P.H) e D, C(P.H) < C(H,P) ><< -
stated in first-order logic to loss components, miti- where ' : the Contradiction label. o —_—— * -_ :
gating inconsistency. A BERT model has t=60% violation while random ° o WAV | w - 0
3. An analysis of the impact of consistencies and pre- guess has t=67% !! \ Mirror Inconsistency 1 (%) Transitivity Inconsistency t(%) e
dictive accuracy, showing that accuracy alone is Transitivity Consistency | N
not sufficient. label transitivity with any sentence triple. f >\/-/ o
V(P,H,Z)e D, (E(P,H)ANE(H,Z) — E(P,2)) Y o— S Y Rk
NE(P,HYNC(H,Z) — C(P,2)) 20 4
Suppc?se we have 3 sent.ences: | NN (P.HYAE (H,Z) — ~C (P.2)) *
P: John is on a train to Berlin. 0 - - 100 1 - - 0o O
H: John is traveling to Berlin. NN(PH)NC(H,Z) = ~E(P, Z)) Percentage of train set(%) Percentage of train set(%)

Z: John is having lunch in Berlin. where E :the Entailmentlabel, N :the Neutrallabel.

In NLI. we know that P entails H and H contradicts Z. With our inconsistency losses, the BERT models become significantly

more consistent. Meanwhile, the accuracies (i.e. annotation consisten-
The question is how to incorporate these non-differentiable cy) remain on par [-0.2, +0.2] across different settings.
rules in an end-to-end training framework.
Triangular norm (t-norm /£, ) defines a systematic
way to relax logic. We use the product t-norm.

What about Pand Z ? We can write a simple rule:
if P entails H, and H contradicts Z,
then P contradicts Z.

With 100% labeled data, BERT model has 90+ accuracy but terrible
consistencies. With 1% labeled data, our framework yields more

, , consistent models than training unconstrainedly with full data.
We want the invariants to

Generally, we can express such domain knowledge in —A l-a . l.e. Accuracy and consistency are complementary metrics.
first-order logic: AN B ab be true. Equivalently, we
vz € D, /\ L(zx) = R(x) A min (1, 2) want their relaxations to Training with mirror consistency does not guarantee better transi-
(L,R) — B be maximally true. tivity consistency (the red curve above).

Where .I': a collection of examples. 1. Consistencies apply to all examples, forming a huge con-

junction, which becomes summation in log space.
2. Particularly, the Annotation consistency becomes
cross-entropy loss.

To measure errors, we define two metrics:

Global violation rate p 1. Our framework introduces a general way to design loss func-

tions using the product t-norm ( /2\).
- (L(x) — R(x : :
i i A ! LYR) (L(z) = R( ))_ 2. No extra trainable parameters are required. |
IS tAnCeS - D 3. Models are both accurate and consistent at the same time.
We use SNLI, MultiNLI, and MSCOCO captions. 4. St i i
. : : : : . Standard evaluations focus on accuracy but not on the mirror/
COndIthnal VIOlathn rate T Mirror labeled Mirror unlabeled = Transitivity eie g . y
_ _ Labeled (M) (U) (T) transitivity consistencies.
| S| V(L) — R@) SNLI
#instances with violation ~  zeD |(L,R) ] MultiNL]
Hinst here LHS hold ‘ ‘ '
instances where olds P MSCOCO For details, please refer to our paper.
zeD | (L,R) ] From MSCOCO, we sampled 100k unlabeled sentence triples for

training, and another 100k for evaluation. Thanks for StOppI ng byl



