Information Synchronization across Multilingual Semi-structured Tables

Siddharth Khincha¹, Chelsi Jain², Vivek Gupta^{3†}, Tushar Kataria^{3†}, Shuo Zhang⁴ ¹IIT Guwahati, ²CTAE, Udaipur, ^{3†}University of Utah, ⁴Bloomberg,

. Information Mismatch in Tables Across Languages

English Table

Hindi Table

- Janaki Ammal Infoboxes: English (right) vs. Hindi (left). Hindi lacks "British Rule of India" context.
- Value mismatches: (a) Hindi table doesn't state Died key's state. (b) Institution values differ -Hindi mentions "residence," English doesn't.
- Missing keys in Hindi table: "Thesis," "Awards," and "Alma Mater." Neither mentions parents, early education, or honors.

2. Problem Magnitude

- Articles in More than 300 languages.
- English has the most significant Wikipedia covering 23% (11%) of total pages (articles).

• Most users' edits (76%) are also done in English Wikipedia.

3. Our Contributions

1 INFOSYNCDataset

- 100K entity-centric wikipedia Infoboxes table across 14 languages
- Approximately 3.5K human annotated table alignment pairs
- Proposed a two-step approach as a solution, include Information
- Alignment to mapped similar rows

• **Update** update missing/outdated rows for aligned tables across multilingual entity centric tables

4. Dataset Details :- Language and category selection

1 Languages

- Languages are selected to cover all the continents.
- 4 low resource Hindi(hi), Cebuano(ceb), , Turkish(tr), and Afrikaans(ak)
- 7 medium resource German(de), Korean(ko), Russian(ru), Arabic(ar), Chinese(zh), Swedish(sv), Dutch(nl)
- 3 high resource English(en), French(fr), Spanish(es)

2 Entities

- Each Entity selected contains an Infobox in at least 5 languages
- 3 Categories Selection
- 21 simple, diverse, and popular topics: Airport, Album, Animal, Athlete, Book, City, College, Company, Country, Food, Monument, Movie Musician, Nobel, Painting, Person, Planet, Shows, and Stadiums.

5. Method: Alignment

Corpus-based : Align rows based on keys using their cosine similarity across a category using majority voting.

Key-only : This module aligns rows with *key* similarity score greater than a threshold value, only if they are mutually most similar keys

Key value bidirectional : This module aligns rows with key+value similarity score greater than a threshold value, only if they are mutually most similar rows.

Key value unidirectional: This module aligns rows with key+value similarity greater than a threshold. They **do not** have to be mutually most

Multi-key : This module considers the case where one row from table needs to be mapped to multiple rows in the second table. It is valid multi-key alignment when the merge value-combination similarity score exceeds that of the most similar key.

Metho SimC LaBS XLM

Corpu + Key + Key + Key + Mu

Our rule-based method efficiently updates a large number of rows, with the highest number of updates being in row transfers.

6. Method: Rule-Based Update

P.R.	Rule Name	Logical Rule $\forall_{(\mathbf{R}_{T_x},\mathbf{R}_{T_y})} \mathbf{L} \mapsto \mathbf{R}$	Update Type
1	Row Transfer	$\forall_{(R_{T_x},R_{T_y})}Al_{T_x}^{T_y}(R_{T_x};R_{T_y})=0$	Row Addition
		$\mapsto T_y \cup tr_x^y(\mathbf{R}_{T_x}) \bigwedge \operatorname{Al}_{T_x}^{T_y}(\mathbf{R}_{T_x}; tr_x^y(\mathbf{R}_{T_x})) = 1$	
2	Multi-Match	$\forall_{(\mathbf{R}_{T_x},\mathbf{R}_{T_y})}(\sum_{\mathbf{R}_{T_x}} \operatorname{Al}_{T_x}^{T_y}(\mathbf{R}_{T_x};\mathbf{R}_{T_y})) > 1$	Row Delete
		$\mapsto \{T_y \setminus \bigcup_{(\forall_{\mathbf{R}_{T_y}} \operatorname{Al}_{T_x}^{T_y}(\mathbf{R}_{T_x};\mathbf{R}_{T_y})=1)} \mathbf{R}_{T_y}\} \bigcup tr_x^y(\mathbf{R}_{T_x}) \bigwedge \operatorname{Al}_{T_x}^{T_y}(\mathbf{R}_{T_x};tr_x^y(\mathbf{R}_{T_x})) = 1$	
3	Time-based	$\forall_{(\mathbf{R}_{T_x},\mathbf{R}_{T_y})} \operatorname{Al}_{T_x}^{T_y}(\mathbf{R}_{T_x};\mathbf{R}_{T_y}) = 1 \bigwedge (\operatorname{isTime}(\mathbf{R}_{T_x},\mathbf{R}_{T_y}) = 1)$	Value Substitute
		$\bigwedge (\operatorname{exTime}(R_{T_x}) > \operatorname{exTime}(R_{T_y})) \mapsto R_{T_y} \leftarrow tr_x^y(R_{T_x})$	
4	Positive Trend	$\forall_{(R_{T_x},R_{T_y},PosTrend)}Al_{T_x}^{T_y}(R_{T_x};R_{T_y}) = 1 \bigwedge exKey(R_{T_x}) \in PosTrend$	Value Substitute
	or	$\bigwedge \mathbf{R}_{T_x} > \mathbf{R}_{T_y} \mapsto \mathbf{R}_{T_y} \leftarrow \mathbf{R}_{T_x}$	
	Negative Trend	$\forall_{(R_{T_x},R_{T_y},NegTrend)}Al_{T_x}^{T_y}(R_{T_x};R_{T_y}) = 1 \bigwedge exKey(R_{T_x}) \in NegTrend$	Value Substitute
		$\bigwedge R_{T_x} < R_{T_y} \mapsto R_{T_y} \leftarrow R_{T_x}$	
5	Append Value	$\mathbf{R}_{T_x} = \mathbf{V} \bigwedge \forall_{(\mathbf{R}_{T_x}, \mathbf{R}_{T_y})} \mathbf{Al}_{T_x}^{T_y}(\mathbf{R}_{T_x}; \mathbf{R}_{T_y}) = 1 \bigwedge \mathbf{R}_{T_x}[k] > \mathbf{R}_{T_y}[k] $	Value Addition
		$\mapsto \forall_{(v \in \mathbf{R}_{T_r}[k] \land \notin tr_x^y(\mathbf{R}_{T_r}[k]))} \mathbf{R}_{T_y} \leftarrow \mathbf{R}_{T_y} \cup tr_x^y(v)$	
6	HR to LR	$(T_x, T_y) \in (HR, LR) \bigwedge \forall_{(\mathbf{R}_{T_x}, \mathbf{R}_{T_y})} \operatorname{Al}_{T_x}^{T_y}(\mathbf{R}_{T_x}; \mathbf{R}_{T_y}) = 1$	Value Substitute
		$\bigwedge tr_x^{en}(\mathbf{R}_{T_x}) \neq tr_y^{en}(\mathbf{R}_{T_y}) \mapsto \mathbf{R}_{T_y} \leftarrow tr_x^y(\mathbf{R}_{T_x})$	
7	# Rows	$ T_x >> T_y \bigwedge \forall_{(R_{T_x},R_{T_y})} \operatorname{Al}_{T_x}^{T_y}(R_{T_x};R_{T_y}) = 1 \bigwedge tr_x^{en}(R_{T_x}) \neq tr_y^{en}(R_{T_y})$	Value Substitute
		$\mapsto \mathbf{\tilde{R}}_{T_y} \leftarrow tr_x^y(\mathbf{R}_{T_x})$	
8	Rare Keys	$\forall_{(R_{T_x},R_{T_y},RarKeys)}Al_{T_x}^{T_y}(R_{T_x};R_{T_y}) = 1 \bigwedge tr_x^{en}(R_{t_x}) \neq tr_y^{en}(R_{t_y})$	Value Substitute
		$\bigwedge \forall_{(R_{T_x},R_{T_y}} exKey(R_{T_x}) \in RarKey > exKey(R_{T_y}) \in RarKey \mapsto R_{T_y} \leftarrow R_{T_x}$	

7. Result: Alignment

Proposed similarity-based alignment method outperforms different multi-lingual baseline.

Match				UnMatch			
$T_{en} \leftrightarrow T_x$	$T_x \leftrightarrow T_y$	$T_{en} \stackrel{*}{\leftrightarrow} T_{hi}$	$T_{en} \stackrel{*}{\leftrightarrow} T_{zh}$	$T_{en} \leftrightarrow T_x$	$T_x \leftrightarrow T_y$	$T_{en} \stackrel{*}{\leftrightarrow} T_{hi}$	$T_{en} \stackrel{*}{\leftrightarrow} T_{zh}$
75.78	68.46	77.93	80.47	79.11	76.3	73.31	74.91
85.25	78.44	88.98	89.1	87.03	81.7	88.98	85.06
80.98	73.74	82.9	86.73	82.68	80.22	76.73	81.85
83.38	75.02	86.85	88.08	85.42	80.65	83.14	83.1
82.85	78.63	86.08	87.58	84.2	83.45	83.14	83.76
84.55	77.45	87.64	88.7	86.3	82.28	83.14	84.3
61.86	56.74	57.34	69.33	70.51	71.73	54.01	63.11
70.41	62.14	73.4	74.67	73.85	73.52	62.49	66.23
87.71	84.2	90.07	93.04	89.51	85.52	85.06	89.2
87.89	84.33	90.34	93.12	89.52	85.42	85.16	88.62
87.91	84.36	90.14	92.8	89.3	85.46	84.98	88.15
	$\begin{array}{c} T_{en} \leftrightarrow T_x \\ 75.78 \\ 85.25 \\ 80.98 \\ 83.38 \\ 82.85 \\ 84.55 \\ \hline 61.86 \\ 70.41 \\ 87.71 \\ 87.89 \\ 87.91 \\ 87.91 \end{array}$	$T_{en} \leftrightarrow T_x \ T_x \leftrightarrow T_y$ 75.7868.4685.2578.4480.9873.7483.3875.0282.8578.6384.5577.4561.8656.7470.4162.1487.7184.287.8984.3387.9184.36	Match $T_{en} \leftrightarrow T_x \ T_x \leftrightarrow T_y \ T_{en} \stackrel{*}{\leftrightarrow} T_{hi}$ 75.7868.4677.9385.2578.4488.9880.9873.7482.983.3875.0286.8582.8578.6386.0884.5577.4587.6461.8656.7457.3470.4162.1473.487.7184.290.0787.8984.3390.34 87.9184.3690.14	Match $T_{en} \leftrightarrow T_x \ T_x \leftrightarrow T_y \ T_{en} \stackrel{*}{\leftrightarrow} T_{hi} \ T_{en} \stackrel{*}{\leftrightarrow} T_{zh}$ 75.7868.4677.9380.4785.2578.4488.9889.180.9873.7482.986.7383.3875.0286.8588.0882.8578.6386.0887.5884.5577.4587.6488.761.8656.7457.3469.3370.4162.1473.474.6787.7184.290.0793.0487.8984.3390.3493.12 87.9184.3690.1492.8	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MatchUnl $T_{en} \leftrightarrow T_x \ T_x \leftrightarrow T_y \ T_{en} \stackrel{*}{\leftrightarrow} T_{hi} \ T_{en} \stackrel{*}{\leftrightarrow} T_{zh} \ T_{en} \leftrightarrow T_x \ T_x \leftrightarrow T_y$ 75.7868.4677.9380.4779.1176.385.2578.4488.9889.187.0381.780.9873.7482.986.7382.6880.2283.3875.0286.8588.0885.4280.6582.8578.6386.0887.5884.283.4584.5577.4587.6488.786.382.2861.8656.7457.3469.3370.5171.7370.4162.1473.474.6773.8573.5287.7184.290.0793.0489.5185.5287.8984.3390.3493.1289.5285.42 87.9184.3690.1492.889.385.46	MatchUnMatch $T_{en} \leftrightarrow T_x \ T_x \leftrightarrow T_y \ T_{en} \stackrel{*}{\leftrightarrow} T_{hi} \ T_{en} \stackrel{*}{\leftrightarrow} T_{zh} \ T_{en} \leftrightarrow T_x \ T_x \leftrightarrow T_y \ T_{en} \stackrel{*}{\leftrightarrow} T_{hi}$ 75.7868.4677.9380.4779.1176.373.3185.2578.4488.9889.187.0381.788.9880.9873.7482.986.7382.6880.2276.7383.3875.0286.8588.0885.4280.6583.1482.8578.6386.0887.5884.283.4583.1484.5577.4587.6488.786.382.2883.1461.8656.7457.3469.3370.5171.7354.0170.4162.1473.474.6773.8573.5262.4987.7184.290.0793.0489.5185.5285.0687.8984.3390.3493.1289.5285.4285.16 87.9184.3690.1492.889.385.4684.98

8. Result: Update

Rules	$ _{T_{en}} \rightarrow T_x$	$\begin{array}{c} \textbf{Gold} \\ T_x \to T_y \end{array}$	Live Set	$\begin{array}{c} \mathbf{Pred} \\ T_{en} \to T_x \end{array}$	icted $T_x \to T_y$
R 1	20320	18055	4213	21246	17675
R2	648	502	207	1395	1852
R3	546	399	75	443	347
R4	142	151	4	120	147
R5	3507	2116	784	3193	1960
R6	5237	3047	332	5062	2891
R7	2748	1899	990	2732	1855
R8	25	77	5	29	82
Al	14967	9715	2851	14864	10657

• Multilingual Tabular Information Synchronization is challenging problem.

- (b.) Updation
- 0.85

Туре		Total	Accept	Reject
Row Transfer		461	368(79.82%)	93(20.17%)
Value Substitu	ition	70	52(74.28%)	18(25.72%)
Append Value	;	72	46(63.88%)	26(36.12%)
Total		603	466 (77.28%)	136(22.72%)
Ln Pairs	Tot	al	Accept	Reject
$T_{en} \to T_x$	204	4 10	61(78.92%)	43(21.07%)
$T_x \to T_y$	210	6 10	69(78.25%)	47(21.75%)
$T_x \to T_{en}$	18.	3 1.	36(74.31%)	47(25.68%)
Total	60.	3 4	66(77.28%)	137(22.71%)

Updates

9. Human Assisted Wikipedia

Engineering

Human evaluator update the Wikipedia Infobox with our mehtod recommendation.

10. Example

11. Key Takeaways

² Taking Wikipedia Infoboxes as our case study, we created INFOSYNC

3 A two-step sequential approach (a.) Alignment and

• Alignment method outperforms baseline with an F1-score >

• The rule-based method received a 77.28 % approval rate on Wikipedia updates.