No GloVes Required

Rule-based Q/A System CS 6340 : Natural Language Processing

Outline

- Overview
- System Architecture
- Components and Algorithms
- Performance
- Success and Regrets
- Lessons Learned
- Contributors

Overview

- Simple Rule-based Question Answering System
- Components-
 - Information Retrieval System (IR) Returns ranked list of sentences based on scores given to words based on different parameters
 - Information Extraction System (IE)- Question Typing. Answer words extracted using rules based on question type.
 - Selector System (SS)- A feedback system which assesses the output returned by IE is fit to be the final answer
- SS allows the IE System validate and provide feedback to the IR System
- Use NLP tools namely Lexical Similarity, POS tagging, NER, Dependency Parsing

Peer System (PS)

Information Retrieval System

- Each sentence is compared with question (word by word).
- Words are matched on multiple parameters [1] -
 - Word Match Score (wmsc) Syntactic Similarity [2] based string matching
 - Strike Score (*strksc*) Higher reward for consecutive matched tokens
 - **POS Score (***possc***)** Certain POS tags match words get higher scores
 - **Root Score (***rootsc***)** root and xcomp match words get higher scores
 - Inverse of Term Frequency (invtf) weighted by inverse of word count

$$WordScore(w_i) = (wmsc + strksc + possc + rootsc) * invtf$$

$$SentenceScore(S_j) = \frac{\sum_{i=1}^{N} WordScore(w_i)}{N}$$

Information Extraction System

Extract information from retrieve sentence. Focuses on improving the answer recall.

- 1. Question Typing
- 2. Question type specific extraction rules [3] (NER, POS, and Dependency tags)
 - a. Who: "PERSON", "ORG", "NORP", and "GPE"
 - b. Where: "LOC", "FAC", "GPE", "PRODUCT", "WORK_OF_ART", "LAW", and "ORG"
 - c. When: "DATE", and "TIME"
 - d. How much: "MONEY", "QUANTITY', "CARDINAL", and "PERCENT" (if "time" : "TIME")
 - e. How many: 'QUANTITY', "CARDINAL", and "PERCENT" (if "years, days" : "DATE")
 - i. More similar rules on basis of dictionary of words
 - f. Which, What, How and Why: Looks for 'Cluewords' in sentences
 - g. **Does, Is, Was: 'YES' or 'No'** (handle negation by dictionary)
- 3. Smartly remove question words and punctuation characters to improve recall

Selector System

- 1. Validate the output of the Information Extraction (IE) System
 - a. **Satisfactory :** Output extracted information
 - b. Otherwise : Supply next best retrieved sentence to the IE system
 - Repeat 1
- 2. If nothing substantial extracted from the top 5 sentences return information extracted from the top rank sentence

Benefit : Handles the special case where complete or empty sentence is returned. Frequently happens in *Who*, *Where*, *and When* questions and few variants of *How* questions.

Performance

Question Type	Precision	Recall	F-Score	#Questions
Where	0.4180	0.4359	0.4268	46
Who	0.4330	0.377	0.4031	47
When	0.6826	0.6783	0.6804	34
What	0.2925	0.6502	0.4035	93
Why	0.4289	0.5479	0.4812	27
How much & How many	0.5871	0.6959	0.6385	41
How	0.4029	0.66	0.5003	17
Which	0.3533	0.3967	0.3737	3

Detailed QA Performance Sheet - <u>https://goo.gl/HknUfQ</u>

Success And Regrets

- Success-
 - **Our Peer System :** Significantly increase precision
 - **Our Sentence Scoring :** Penalize frequent words
 - **Our NER-IE Rules:** High recall on {*When, How much, How many*} questions
 - **Best absolute score** in precision and recall
- Regrets-
 - **Coreference resolution** fails to improve system performance
 - Doesn't take into account **semantic similarity** (e.g. Word Mover Distance)
 - Doesn't incorporate **pattern based category extraction** (e.g. groups of people)
 - Doesn't automatically learn IR scoring weights (e.g. Linear programming)
 - Better extraction technique for **{What, Why, How} questions**

Lessons Learned

- Best retrieved sentence may not have the correct answer
- Room for improvement in **Coreference Resolution**
- Verbs act as the biggest clues in questions
- Pattern extraction based on question type is a tricky problem
- An algorithm for **automatic learning of score weights** is desirable
- **Preprocessing** is not as trivial as you think it is!

CONTRIBUTORS

MAITREY MEHTA

Information Retrieval System, Selector System maitrey@cs.utah.edu

VIVEK GUPTA Question Typing, Information Extraction System vgupta@cs.utah.edu

Thank you.

QUESTIONS?

Test it yourself: https://bitbucket.org/vgupta123/simple-question-answering

It doesn't work why?

It works.....

why?

References and Resources

[1] Cao J., Song B. <u>"Talking Geckos"</u>

[2] Islam, A. and Inkpen, D., 2008. Semantic text similarity using corpus-based word similarity and string similarity. ACM Transactions on Knowledge Discovery from Data (TKDD), 2(2), p.10.
[3] Riloff, Ellen, and Michael Thelen. "A rule-based question answering system for reading comprehension tests." In Proceedings of the 2000 ANLP/NAACL Workshop on Reading comprehension tests as evaluation for computer-based language understanding systems-Volume 6, pp. 13-19. Association for Computational Linguistics, 2000.

Language of Implementation - Python 2.7.1 POS Tagger - NLTK NER Tagger - SpaCy CoreRef - Stanford CoreNLP Dependency Parser - SpaCy BIO Tagger - SpaCy