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ABSTRACT

Semi-structured tabular data, such as ones in e-commerce product descriptions, annual

financial reports, sports score statistics, scientific articles, etc., are ubiquitous in real-world

applications. This dissertation investigates how machines understand and reason about

such data. Understanding the meaning of text fragments and their implicit connections is

essential for processing such data.

The author introduces the InfoTabS dataset, which presents a challenge for traditional

modeling techniques due to its semi-structured, multi-domain, and heterogeneous nature.

To overcome these challenges, effective ways of incorporating knowledge into reason-

ing models are explored. This approach involves using simple pre-processing strategies

and leveraging structured data knowledge graphs. Additionally, the author proposes

a cost-effective pipeline for translating tables to address the challenge of multilingual

tabular inference, which enables the extension of InfoTabS to a multilingual version called

XInfoTabS.

Through systematic probing, it was observed that existing models do not reason with

tabular facts despite accurate predictions. Therefore, a trustworthy tabular inference ap-

proach involving two-stage evidence extraction and inference prediction was proposed.

Additionally, semi-automatic data augmentation techniques were investigated, and the

Auto-TNLI dataset was introduced to improve reasoning on the InfoTabS dataset. To

further enhance model robustness, a prompt-based learning approach was introduced

that extracts knowledge from semi-structured tables, thus improving performance and

robustness on adversarial tests.

The work opens up several new directions for future work involving reasoning on

dynamic, multilingual, and multi-modal semi-structured tabular information.
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CHAPTER 1

INTRODUCTION

Semi-structured tables are a ubiquitous feature in various domains, including ecom-

merce product listings, finance annual reports, sports score tables, scientific articles, etc.

Despite their varied contexts, these tables share some common characteristics. One notable

attribute is their succinct nature; they can hold a large amount of information in a compact

form. Thus, making them an ideal tool for comparative analysis and finding information.

Additionally, tables (such as the one in Figure 1.1) require complex reasoning and inference

to understand the implicit connections across table cells.

Although neural network models have gained success on unstructured text (sentences

and paragraphs), their reasoning capacity on semi-structured text is poorly understood.

Consequently, people (even NLP experts) have limited perception on how models reason.

Reasoning over semi-structured tabular text involves comprehension of the meaning of

text fragments and implicit relationships between tabular entries. Thus, semi-structured

data can serve as a crucial testing ground for increasing the understanding of how Nat-

ural Language Processing (NLP) models reason about information. Thus, studying semi-

structured data is essential for understanding model reasoning ability on textual informa-

tion. Therefore, this dissertation focuses on entity-centric semi-structured tabular data.

1.1 Reasoning about Semi-Structured Data
We often encounter textual information that is neither unstructured (i.e., raw text) nor

strictly structured (e.g., databases). Such data, where a structured scaffolding is populated

with free-form text, can range from the highly verbose (e.g., web pages) to the highly

terse (e.g. fact sheets, information tables, technical specifications, material safety sheets).

Unlike databases, such semi-structured data can be heterogeneous in nature, and not

characterized by pre-defined schemas. Moreover, we may not always have accompanying

explanatory text that provides context. Yet, we routinely make inferences about such
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heterogeneous, incomplete information and fill in gaps in the available information using

our expectations about relationships between the elements in the data.

Understanding semi-structured information requires a broad spectrum of reasoning

capabilities. We need to understand information in an ad hoc layout constructed with ele-

ments (cells in a table) that are text snippets, form fields or are themselves sub-structured

(e.g., with a list of elements). Querying such data can require various kinds of inferences.

At the level of individual cells, these include simple lookup (e.g., knowing that Breakfast in

America is recorded in a studio), to lexical inferences (e.g., understanding that Length means

the total recording songs time for the album), to understanding types of text in the cells

(e.g., knowing that the number 1979 is a year and 46:06 is in minutes). Moreover, we may

also need to aggregate information across multiple rows (e.g., knowing that comparison of

release and recording date month for the album), or perform complex reasoning that combines

temporal information with world knowledge. A true test of reasoning should evaluate the

ability to handle such semi-structured information.

1.2 Tabular Natural Language Inference
Natural Language Inference (NLI) is the task of determining if a hypothesis sentence

can be inferred as true (ENTAIL), false (CONTRADICT), or undetermined (NEUTRAL) given

a premise sentence [45]. Contextual sentence embeddings such as BERT [51], RoBERTa [158],

and DeBERTa [92] applied to large NLI datasets such as SNLI [17] and MultiNLI [280], have

led to near-human performance of NLI systems, on benchmarks such as Glue [270] and

SuperGlue [269]. In this dissertation, we study this question by proposing an extension of

the natural language inference (NLI) task [44] to tabular natural language inference.

This dissertation examines reasoning and inference over semi-structured tabular text,

specifically entity-centric InfoBox tables (cf. Figure 1.1). To explore this, we introduce

a new dataset called InfoTabS [84] in Chapter 3, which is used to investigate the task

of tabular Natural Language Inference (NLI), based on premises that are extracted from

Wikipedia info-boxes. InfoTabS’s semi-structured, multi-domain and heterogeneous na-

ture of the tabular data admits complex, multi-faceted reasoning. In Chapter 10, we ex-

tend the InfoTabS to it’s multilingual version XInfoTabS [4, 171], which consist of 10

languages, belonging belong to seven distinct language families (seven continent, 2.76
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billion speakers) and six unique writing scripts. To create XInfoTabS, we leverage ma-

chine translation models and developed an effective translation pipeline which provide

high-quality translations of tabular data.

Tabular Data Scarcity: Human-generated tabular datasets, such as InfoTabS, are lim-

ited in scale and thus insufficient for learning with large language models [51, 158]. Since

curating these datasets requires expertise, huge annotation time, and expense, they cannot

be scaled. Furthermore, it has been shown that these datasets suffer from annotation bias

and spurious correlation problem [75, 87, 202]. In contrast, automatically generated data

lacks diversity and have naive reasoning aspects. Recently, [173, 190, 306] proposed to use

large language generation model [137, 208, 210] for data generation. Despite substantial

improvement, these generation approaches still lack factuality, i.e., suffer hallucination,

have poor facts coverage, and also suffer from token repetition (refer to Chapter 8 analy-

sis). Recently, [25] shows that automatic tabular NLG frameworks cannot produce logical

statements and provide only surface reasoning. To address the above shortcomings, in

Chapter 8, we propose a semi-automatic framework that exploits the patterns in tabular

structure for hypothesis generation.

1.3 Integrating Knowledge for Tabular Reasoning
Tables hold information in succinct form, which makes information navigation in the

cluttered world challenging. Tables lack the necessary context to comprehend the meaning

of a text fragment (such as a key) and its relationship to other elements (such as value

and other keys). For example, in Figure 1.1, we need to interpret the key ’Length’ in the

context of music albums for the given table. Furthermore, due to inadequate training

data, models trained on tables are often feeble in implicit lexical knowledge. This affects

interpreting the meaning of words such as ”less than” in H1 (c.f. Figure 1.1). Therefore,

in Chapter 4 and Chapter 5, we explore the problem of knowledge integration using

simple pre-processing techniques and knowledge graph incorporated transformer long

short-term memory (TransKBLSTM) based approaches. We observe that incorporating

knowledge not only improves tabular model performance, but also model interpretability.

Furthermore, although simple prepossessing is effective, we observe that our transformer

LSTM based approach performs better.
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1.4 Probing Tabular Reasoning Models
Merely achieving high accuracy is not sufficient evidence of reasoning: the model may

arrive at the right answer for the wrong reasons leading to inadequate generalization

over unseen data. ”Reasoning” is a multi-faceted phenomenon, and fully characterizing

it is almost impossible. However, one can probe for the absence of evidence-grounded

reasoning i.e. “reasoning failures” via model responses to carefully constructed inputs

and their variants. For example there are certain pieces of information in the premise

(irrelevant to the hypothesis) when changed, should not impact the outcome, thus making

the outcome invariant to these changes. For example, deleting irrelevant rows from the

premise should not change the model’s predicted label. Contrary to this is the relevant

information (“evidence”) in the premise. Changing these pieces of information should

vary the outcome in a predictable manner, making the model covariant with these changes.

For example, deleting relevant evidence rows should change the model’s predicted label

to NEUTRAL1.

While “reasoning” can take varied forms, a model that claims to do so should at least

ground its outputs on the evidence provided in its inputs. Concretely, we argue that such

a model should (a) be self-consistent in its predictions across controlled variants of the

input, (b) use the evidence presented to it, and the right parts thereof, and, (c) avoid being

biased against the given evidence by knowledge encoded in the pre-trained embeddings.

Overall, the guiding premise for this (in-/co-)variants perturbation probing is:

Any “Evidence-based reasoning” systems should respond predictably to controlled input
changes.

Directly checking for such property there would require a lot of labeled data—a big

practical impediment. Fortunately, in the case of tabular semi-structured data, the (in-

/co-)variants associated with these dimensions allow controlled and semi-automatic edits

to the inputs leading to predictable variation of the expected output. We instantiate the

above knowledge along three dimensions to introduce specific probes for experiment on

InfoTabS in the dissertation Chapter 6. Our probes demonstrate that models often fail to

reason properly on the semi-structured inputs. For example, they often ignore relevant

rows, and (a) focus on the irrelevant rows [182], (b) use only the hypothesis sentence [87,

1This strategy has been either explicitly or implicitly also employed for recent non-tabular work [72, 221].
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202], or (c) knowledge acquired during pre-training [83, 104] . In essence, they use spurious

correlations between irrelevant rows, the hypothesis, and the inference label for prediction.

1.5 Evidence Grounded Tabular Inference

When adapted for tabular NLI by flattening tables into synthetic sentences using heuris-

tics, tabular inference model as described in Chapter 3 achieve remarkable performance

on the datasets, such as InfoTabS. However, as discussed in tabular probing Chapter 6

[83] models often fail to reason properly on the semi-structured inputs. More specifically

they either focus on irrelevant rows [182] or ignore the premise tables [83]. Thus, existing

NLI systems optimized solely for the label prediction cannot be trusted. It is not suffi-

cient for a model to be merely Right but also Right for the Right Reasons. In particular,

at least identifying the relevant elements of inputs as the ‘Right Reasons’ is essential for

trustworthy reasoning. We argue that a reasoning system can be deemed trustworthy only

if it exposes how its decisions are made, thus admitting verification of the reasons for its

decisions. We address this issue by introducing the task of Trustworthy Tabular Inference,

in dissertation Chapter 7 where model first extracts relevant rows as evidence and then

predict the inference labels. A two-stage sequential prediction approach is proposed for

the task, comprising of an evidence extraction stage, followed by an inference stage. In

the evidence extraction stage, the model extracts the necessary information needed for the

second stage. In the inference stage, the NLI model uses only the extracted evidence as the

premise for the label prediction task

1.6 Pre-Training for Enhancing Tabular Reasoning
Recently, [199] shows that LM’s pre-trained without explicit supervision on a huge

corpus of free web data implicitly incorporate several types of knowledge into their pa-

rameters. For extracting this knowledge from language models (LM), various methods

utilize probing [95, 265], attention [105, 279], and prompting [200, 237] strategies. This

internalized knowledge cannot be retrieved when fine-turning for a subsequent task. One

explanation is that the objectives of pre-training and fine-tuning are vastly different. This

variation in training objectives also diminishes the expected performance gains of the

task, hence necessitating further pre-training on training data [58, 224, 284]. Therefore,
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reframing the subsequent task as a joint pre-training objective becomes essential. Hence,

in Chapter 9, we reformulate the tabular NLI, i.e., our downstream task as a cloze-style

problem, a.k.a, a masked language modeling (MLM) problem. We utilize the efficient

Pattern-Exploiting Training (PET) technique [231, 232, 249].

1.7 Dissertation Overview
Thesis Statement: Reasoning on semi-structured data, particularly entity-centric tables,
is simple for humans but difficult for NLP models, which are primarily designed for
unstructured text. Even when these models appear to make correct inferences, they do
so for the wrong reasons. To address these challenges, the models should be able to
incorporate knowledge and focus on the relevant parts of semi-structured evidence.

In this dissertation, we explore reasoning and inference over semi-structured tabular

text, more precisely entity-centric InfoBox tables, which is a critical component of Natural

Language Understanding. The task poses numerous real challenges, including effective

table representation, successful knowledge addition, model robustness to perturbation,

requisite evidence extraction, addressing tabular data scarcity, and multilingual adapta-

tion. To address these challenges, we introduce novel resources (InfoTabS,XInfoTabS),

systematic probes, pattern exploited training, trustworthy modeling framework, and ef-

fective data augmentation (Auto-TNLI) techniques for tables. By tackling these issues

in semi-structured data, we hope to contribute to the development of novel methods for

reasoning with tabular information, and ultimately advance our understanding of these

complex data types.

In this dissertation, we addressed the following research questions:

Q1. How do models designed for unstructured text adapt to (semi-)structured data?

A1. We introduce the task of inference on semi-structure tabular data via InfoTabS data-

sets and create initial baselines on it. (Chapter 3)

Q2. How does one incorporate knowledge both implicit and explicit type into tabular models?

A2. We study two effective ways to integrate knowledge in tabular reasoning model

(a.) simple pre-processing techniques, and (b.) a knowledge transformer LSTM models.

(Chapters 4, 5, and 9)

Q3. How to ensure that the model is doing correct evidence-based reasoning?

A3. We design a systematic probes to evaluating tabular models for (a.) robustness to

artifacts, (b.) relevant evidence selection, and (c.) robustness to counterfactual changes.
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(Chapter 6)

Q4. How to enforce existing model to select right evidence for reasoning?

A4. To address evidence selection issues, we introduce trustworthy tabular inference,

a two-stage approach that first extracts evidence and then predicts the inference label.

(Chapter 7)

Q5. How to address tabular data scarcity problem for effective data augmentation?

A5. We explore effective semi-automated framework for tabular data enhancement, thus

creating Auto-TNLI for human curated InfoTabS augmentation. (Chapter 8)

Q6. How to effectively pre-trained model for entity-centric semi-structured tables?

A6. We enhance the model’s reasoning via prompt learning, i.e., PET, to extracts knowl-

edge from semi-structured tables, to increase model performance, generalizability and

robustness, specially on adversarial datasets. (Chapter 9)

Q7. How can we ensure tabular reasoning model reason across multiple language (not just En-

glish)?

A7. We extended the English tabular inference dataset (TNLI) InfoTabS to it multilingual

variant XInfoTabS, which consists of 10 languages. (Chapter 10)
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Breakfast in America Relevance

Released4 29 March 19794 H3
Recorded3,4 May-December 19783,4 H2, H3
Studio The Village Recorder in Los Angeles3

Genre Pop, Art Rock, Soft Rock
Length2 46:062 H1
Label A&M
Producer1 Peter Henderson, Supertramp1 H1

H1: Supertramp produced1 an album that was less than an hour long2.

H2: Most of Breakfast in America was recorded3 in the last month of 19783.

H3: Breakfast in America was released4 the same month recording4 ended.

Figure 1.1: A semi-structured premise (the table ‘Breakfast in America’) example from InfoTabS.
The table displays three hypotheses, with H1 entailed, H2 neither entailed nor contradictory, and
H3 contradictory. Relevant rows are highlighted in color, and the ”Relevance” column indicates
which hypotheses use each row for reasoning.



CHAPTER 2

BACKGROUND

2.1 Natural Language Inference
Textual Entailment (TE) and Natural Langauge Inference (NLI) are two related tasks

in Natural Language Processing (NLP) that involve determining the logical relationship

between two pieces of text. Both tasks involves determining whether a given hypothesis

is true (or more generally, whether it is entailed, contradicted, or neutral) given a certain

context or premise. Now consider the following pair of sentences:

Premise: The cat chased the mouse.
Hypothesis: The cat ate the mouse.

In this case, the hypothesis (The cat ate the mouse) is neither entailed nor contradicted

by the premise (the cat chased the mouse), because it is possible that the cat ate the mouse

after the cat chased, or maybe not if the mouse succeeded in escaping. Therefore, the

relationship between the premise and the hypothesis is considered ”neutral” i.e. maybe

true or false in NLI.

Here is few more examples:

Premise: John bought a new bike yesterday.
Hypothesis: John has a bike today.

In this case, the premise (John bought a new bike yesterday) entails the hypothesis

(John has a bike today), because if John bought a bike yesterday, then it is likely that he

still has it today.

Premise: The restaurant was completely full and had a long waiting list.
Hypothesis: The food was delicious.

In this case, the hypothesis (the food was delicious) is not entailed by the premise (the

restaurant was completely full and had a long waiting list), because it is possible that

people were waiting for a table despite the food being mediocre or bad. Therefore, the

relationship between the premise and the hypothesis is considered ”neutral” i.e. maybe

true or false in NLI.
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Both, NLE and TE are well studied in the past with several diverse datasets. The annual

PASCAL RTE challenges [44] were associated with several thousands of human-annotated

entailment pairs. The Stanford Natural Language Inference (SNLI) dataset [17] is the first

large scale entailment dataset that uses image captions as premises, while the Multi-Genre

Natural Language Inference (MNLI) [280] uses premises from multiple domains. The

QNLI and WNLI datasets provide a new perspective by converting the SQuAD ques-

tion answering data [214] and Winograd Schema Challenge data [136] respectively into

inference tasks. More recently, SciTail [124] and Adversarial NLI [185] have focused on

building adversarial datasets; the former uses information retrieval to select adversarial

premises, while the latter uses iterative annotation cycles to confuse models. NLI and

TE are important tasks in NLP because they have many practical applications, such as

question answering, summarization, and dialogue systems, among others. They also serve

as a benchmark for evaluating NLP models performance.

2.2 Reasoning for Natural Language Inference
Let’s consider two examples to understand different types of reasoning require for NLI:

Premise: A woman is slicing an onion.
Hypothesis: The woman is making a salad.

To correctly classify this example, the model needs to understand the relationship

between slicing an onion and making a salad. The model must also understand that the

given hypothesis is consistent with the given premise.

Premise: The company announced a new product today.
Hypothesis: A product launch occurred today.

In this example, the model needs to understand that ”announcing a new product”

and ”product launch” are semantically similar, and that the given hypothesis is consistent

with the given premise. The model must also recognize that the genre of the premise

and hypothesis may differ, and this should not affect the classification. To perform NLI

effectively, a model needs to be able to perform several types of reasoning, some including:

1. Semantic understanding: This involves understanding the meaning of words and

phrases in the premise and hypothesis sentences, and how they relate to each other.

This requires the model to be able to recognize word-level and sentence-level seman-

tics, such as synonyms, antonyms, hyponyms, and hypernyms and paraphrases. For



11

example, in the first example ”A woman is slicing an onion” and ”The woman is

making a salad,” the model must recognize that ”slicing an onion” and ”making a

salad” are related concepts, and that they both involve food preparation.

2. Logical reasoning: This involves the ability to perform logical reasoning, such as

recognizing contradictions and entailment relationships between the premise and

hypothesis sentences. The model must be able to recognize when the hypothesis

contradicts the premise, when it is entailed by the premise, or when it is neutral with

respect to the premise. For example, in the first example, the model must recognize

that ”slicing an onion” does not necessarily entail ”making a salad,” but that it is

consistent with it.

3. World knowledge: This involves having access to a broad range of world knowl-

edge, including common sense and domain-specific knowledge, to make accurate

predictions. The model must be able to recognize when a hypothesis is consistent

with the real world, and when it is not. For example, in the second example ”The

company announced a new product today” and ”A product launch occurred today,”

the model must recognize that the two statements are referring to the same event,

even though they use different phrasing.

4. Contextual reasoning: This involves considering the context in which the premise

and hypothesis sentences appear, including the domain, genre, style, and discourse

structure, to make accurate predictions. The model must be able to recognize when

the context of the premise and hypothesis sentences differ, and when this should not

affect the inference. For example, in the second example, the model must recognize

that the domain of the premise sentence is a news article, while the domain of the

hypothesis sentence is more general.

Across NLP, a lot of work has been published around different kinds of reasonings.

The GLUE [270] benchmark introduced collection of tasks (NLI, QA, Textual Similarity

and soon) and datasets (MNLI, RTE, QNLI and soon) along with various reasoning types

(Numerical, Temporal, Ellipsys, Coreference, Entity Typing, Knowledge and Common

Sense , Quantification and soon), required to evaluate the performance of natural lan-

guage understanding models on the diverse range of NLP tasks, including NLI. Recently,

SuperGlue [269] benchmark is also introduced which introduce more diverse task and
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even more complex reasoning. Challenging datasets have emerged in NLI that emphasize 

distinct complex reasoning. [14] pose the task of determining the most plausible inferences 

based on observation, requiring abductive reasoning. Others such as, common sense 

reasoning in [247], temporal reasoning in [308], numerical reasoning focused in [178, 267] 

and multi-hop [122] reasoning have all sparked immense research interest.

2.3 Table Natural Language Inference
Recently NLP community has focused on investigating various NLP tasks on diverse 

types of semi-structured tabular data (refer to Figure 2.1 for table types), including tabular 

NLI and fact verification [26, 5 4]. As of 2023, other than the work presented in this dis-

sertation, there is only one public human curated NLI dataset on tables, namely TabFact 

[26]. In this section you will focus on TabFact, and will present our new dataset InfoTabS 

on entity-centric tables (refer to Chapter 3). TabFact [26], considers database-style tables 

as premises with human-annotated hypotheses sentence for inference task. The Wikipedia 

tables of TabFact are homogeneous, with each column having structural redundancy and 

common entity type. Figure 1.1 and Figure 2.2 show inference examples for InfoTabS and 

TabFact datasets respectively. The reasonings of the hypotheses in TabFact are numerical 

logical operations based mostly involving comparatives, superlative, counting, ranking, 

aggregation and soon, refer to Figure 2.3. TabFact based on complexity of reasoning has 

separate simple and complex test sets.

Manual verses Automated Dataset: Tabular dataset has long been explored [119, 177, 

225, 284]. For tabular NLI in particular, the datasets can be categorized into (1.) Manually 

created datasets [84] (Chapter 3) with manually creates both hypothesis and premise, [26] 

manually creates the hypothesis while premise is automatically generated (2.) Syntheti-

cally created semi-automatically generated datasets which completely automate data gen-

eration requires manual designing table-dependent context-free grammar (CFG) [58], or 

require logical forms to be annotated [25, 29, 177]. These work mostly address the database 

style simialr to TabFact types tables. Furthermore, semi-automatic systems requiring a 

Context Free Grammar (CFG) or logical forms contains reasoning which is often limited 

to certain types. Creating sentences that contain other reasonings (like lexical reasoning, 

knowledge, and common sense reasoning) is challenging using CFG and logical forms. In
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this dissertation Chapter 8, we introduce Auto-TNLI a semi-automatically synthetic and 

counterfactual InfoTabS style large scale dataset.

Other Tabular Tasks: Additionally, various question answering and semantic parsing 

tasks [1, 24, 27, 128, 151, 189, 195, 245, 297, 302, 303], and table-to-text generation [25, 141, 

194, 207, 293] are also recently introduce. Previous work has also touched upon semantic 

parsing and question answering [123, 195], which typically work with tables with many 

entries that resemble database records.

Table Modeling Work: Some recent papers have also proposed ideas for representing 

Wikipedia relational tables, some such papers are TAPAS [94], StrucBERT [257], Table2vec 

[301], TaBERT [291], TABBIE [101], TabStruc [300], TabGCN [204], RCI [77], TURL [49] and 

TableFormer [289]. Some papers such as [58, 177, 182, 238, 294, 295] study the improvement 

of tabular inference by pre-training. In this dissertation Chapter 9, we also introduce 

pattern exploited pre-training (PET) for infobox style tables for InfoTabS dataset.

2.4 Information Extraction for Semi-Structured Tables
There are several approaches for information extraction (IE) from semi-structured text 

[55]. Below we describe some of them based on amount of data supervision:

1. Supervised Wrapper Induction: This is a closed supervised IE (i.e. ) approach which

infers rules for each relation schema in semi-structure database. These learnt rules

are called wrappers. The main idea is to learn rules that are resilient to small page

alterations by using locally consistent features surrounding an attribute’s values.

Prior works includes [20, 43, 67, 81, 131, 132], and others. The main issue with

these approaches is that they rely on correct manually labeled data, which limits

their scalability. Furthermore, these models rely on specific templates and cannot

generalize to other templates.

2. Distant Supervision Approaches: These closed IE approaches use distant(auxiliary)

supervision to generate cheap, but noisy training data. For examples, using seed

knowledge based of one domain as source as distant supervision for other similar

domain. Prior work includes [36, 66, 90, 159], and others. One significant disad-

vantage of such methods is that they necessitate the availability of a domain-specific

knowledge base for each domain. Furthermore, models have low recall score due to

closed form nature of task.
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3. Open IE - Schema Less Approaches: These methods are designed to extract new

and unknown relations from semi-structured text. The essential aspect is to take

advantage of data redundancy in data-rich websites that overlap at the schema and

instance level. The methods locate extractors that maximize overlap semantically

comparable data from multiple sources [18]. Recent methods such as [160, 161]

discover new connections using visual similarity between seed and new (relation,

object) pairings. The disadvantage of these methods is that they require numerous

websites within a domain for data redundancy.

Apart from the approaches outlined above, two shared tasks, namely the SemEval’21

Task 9 [226] and FEVEROUS’21 shared task [5] are also proposed in the past, both of

which include IE for relational tables. The two IE task are: (a.) SemEval Task 9: This task

focuses on statement verification and evidence extraction using relational tables derived

from scientific articles. Some methods proposed for these shared tasks are [2, 74, 113, 177,

227, 261], and (b.) FEVEROUS’21: The FEVEROUS’21 shared task verifies information

using unstructured and structured evidence from open-domain Wikipedia. FEVEROUS

data has relational tables, unstructured text, and entity tables. Some methods proposed

for these shared tasks are [16, 65, 76, 127, 165, 229, 255].

2.4.1 Web-Table Extraction

The majority of the approaches presented above are intended for semi-structured pages.

Unique web-table extraction methods are provided for tables in InfoTabS and TabFact.

These methods intend to extract semantics from tables by determining the subject column,

column class, and ontological relations for pairs of columns. The subject column methods

[100, 264] utilize generic subject entity characteristics such as value uniqueness, string

type, amount of characters, and words for IE. The column class methods [48, 271] utilize

external data – web extracted triples, knowledge graph for IE. The relational pair methods

[82, 148, 264] utilize similarity measure between a column and entities of a type in a

knowledge base for IE.

2.5 Multilinguality and Other Concerns
Given the need for greater inclusivity towards linguistic diversity in NLP applica-

tions, various multilingual versions of datasets have been created for text classification
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[42, 203, 290], question answering [8, 37, 138] and structure prediction [188, 211]. Following

the introduction of datasets, multilingual leaderboards like XTREME leaderboard [98], the

XGLUE leaderboard [147] and the XTREME-R leaderboard [228] have been created to test

models’ cross-lingual transfer and language understanding.

Multilingual models can be broadly classified into two variants: (a) Natural Language

Understanding (NLU) models like mBERT [51], XLM [41], XLM-R [40], XLM-E [32], Rem-

BERT [35], and (b) Natural Language Generation (NLG) models like mT5 [286], mBART

[157], M2M100 [59]. NLU models have been used in multilingual language understanding

tasks like sentiment analysis, semantic similarity and natural language inference while

NLG models are used in generation tasks like question-answering and machine transla-

tion. Furthermore, multilingual models have shown to be extremely memory and time

efficient. Various models have been proposed that achieve state-of-the-art results on the

previously mentioned leaderboards.

Multilingual, and specifically cross-Lingual transfer [50, 197], has been widely dis-

cussed in the context of low resource languages. Several datasets [8, 42, 139, 188, 203, 290],

benchmarks and leaderboards [98, 121, 146, 228], and evaluation frameworks [117, 244,

254] have emerged which focus entirely on evaluation of multilingual NLU. Further, mul-

tilingual language models have been developed for (a.) Natural Language Understanding

[32, 35, 40, 41, 51], (b.) and Natural Language Generation [59, 286]. Multilingual models

have shown great success in cross-lingual transfer and understanding for both languages

with varying resource levels.

The Annotation Artifacts Problem: Recently, pre-trained transformer-based models

[209] have seemingly outperformed human performance on several NLI tasks in Glue and

SuperGlue. However, it has been shown by [78, 87, 179, 187, 202, 266] that these models

exploit spurious patterns (artifacts) in the data to obtain good performance. It is imperative

to produce datasets that allow for controlled study of artifacts. A popular strategy today is

to use adversarial annotation [185, 298] and rewriting of the input [26]. In this dissertation,

we shows that one can systematically construct tabular test sets for studying artifacts along

specific dimensions.
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Figure 2.1: Types of tables in various tabular inference datasets.

Figure 2.2: Example from TabFact dataset.

Figure 2.3: Reasoning and their proportion in TabFact dataset.



CHAPTER 3

INFERENCE ON SEMI-STRUCTURED TABLES

Adapted from V. Gupta, M. Mehta, P. Nokhiz, and V. Srikumar, INFOTABS: Inference on

tables as semi-structured data, in Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics, Online, July 5–10, 2020, Association for Computational

Linguistics, pp. 2309–2324.

In this chapter, we introduce the InfoTabS dataset to study and model inference with

semi-structured data. Premises in our dataset consist of info-boxes that convey informa-

tion implicitly, and thus require complex reasoning to ascertain the validity of hypotheses.

For example, determining that the hypothesis H2 in Figure 3.1 entails the premise table

requires looking at multiple rows of the table, understanding the meaning of the row

labeled Mixed gender, and also that Dressage is a sport.

InfoTabS consists of 23,738 premise-hypothesis pairs, where all premises are info-

boxes, and the hypotheses are short sentences. As in the NLI task, the objective is to

ascertain whether the premise entails, contradicts or is unrelated to the hypothesis. The

dataset has 2,540 unique info-boxes drawn from Wikipedia articles across various cate-

gories, and all the hypotheses are written by Amazon’s Mechanical Turk workers. Our

analysis of the data shows that ascertaining the label typically requires the composing of

multiple types of inferences across multiple rows from the tables in the context of world

knowledge. Separate verification experiments on subsamples of the data also confirm the

high quality of the dataset.

We envision our dataset as a challenging testbed for studying how models can reason

about semi-structured information. To control for the possibility of models memorizing

superficial similarities in the data to achieve high performance, in addition to the standard

train/dev/test split, our dataset includes two additional test sets that are constructed by

systematically changing the surface forms of the hypothesis and the domains of the tables.



18

We report the results of several families of approaches representing word overlap based

models, models that exploit the structural aspect of the premise, and also derivatives of

state-of-the-art NLI systems. Our experiments reveal that all these approaches underper-

form across the three test sets. This work is published at ACL 2020 as [84].1

3.1 Contributions
The main contributions we make here are:

1. We propose a new English natural language inference dataset, InfoTabS, to study

the problem of reasoning about semi-structured data.

2. To differentiate models’ ability to reason about the premises from their memorization

of spurious patterns, we created three challenge test sets with controlled differences

that employ similar reasoning as the training set.

3. We show that several existing approaches for NLI underperform on our dataset,

suggesting the need for new modeling strategies.

3.2 Background
Tasks based on semi-structured data in the form of tables, graphs and databases (with

entries as text) contain complex reasoning [26, 54] has been studied before. Previous

work has also touched upon semantic parsing and question answering [123, 195, and

references therein], which typically work with tables with many entries that resemble

database records.

Our work is most closely related to TabFact [26], which considers database-style tables

as premises with human-annotated hypotheses to form an inference task. While there are

similarities in the task formulation scheme, our work presents an orthogonal perspective:

(i) The Wikipedia tables premises of TabFact are homogeneous, i.e., each column in a table

has structural redundancy and all entries have the same type. One can look at multi-

ple entries of a column to infer extra information, e.g., all entries of a column are about

locations. On the contrary, the premises in our dataset are heterogeneous. (ii) TabFact

only considers entailment and contradiction; we argue that inference is non-binary with a

third “undetermined” class (neutrals). (iii) Compared to our multi-faceted reasonings, the

1The dataset, along with associated scripts, are available at https://infotabs.github.io/.

https://infotabs.github.io/
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reasonings of the hypotheses in TabFact are limited and mostly numerical or comparatives.

(iv) The α2 and α3 sets help us check for annotation and domain artifacts.

3.3 Case for Reasoning
We often encounter textual information that is neither unstructured (i.e., raw text) nor

strictly structured (e.g., databases). Such data, where a structured scaffolding is populated

with free-form text, can range from the highly verbose (e.g., web pages) to the highly

terse (e.g. fact sheets, information tables, technical specifications, material safety sheets).

Unlike databases, such semi-structured data can be heterogeneous in nature, and not

characterized by pre-defined schemas. Moreover, we may not always have accompanying

explanatory text that provides context. Yet, we routinely make inferences about such

heterogeneous, incomplete information and fill in gaps in the available information using

our expectations about relationships between the elements in the data.

Understanding semi-structured information requires a broad spectrum of reasoning

capabilities. We need to understand information in an ad hoc layout constructed with ele-

ments (cells in a table) that are text snippets, form fields or are themselves sub-structured

(e.g., with a list of elements). Querying such data can require various kinds of inferences.

At the level of individual cells, these include simple lookup (e.g., knowing that dressage

takes place in an arena), to lexical inferences (e.g., understanding that Mixed Gender means

both men and women compete), to understanding types of text in the cells (e.g., knowing

that the number 1912 is a year). Moreover, we may also need to aggregate information

across multiple rows (e.g., knowing that dressage is a non-contact sport that both men and

women compete in), or perform complex reasoning that combines temporal information with

world knowledge.

We argue that a true test of reasoning should evaluate the ability to handle such semi-

structured information. To this end, we define a new task modeled along the lines of NLI,

but with tabular premises and textual hypotheses, and introduce a new dataset InfoTabS

for this task.
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3.4 The Need for Multi-Faceted Evaluation
Before describing the new dataset, we will characterize our approach for a successful

evaluation of automated reasoning.

Recent work has shown that many datasets for NLI contain annotation biases or arti-

facts [202]. In other words, large models trained on such datasets are prone to learning

spurious patterns—they can predict correct labels even with incomplete or noisy inputs.

For instance, not and no in a hypothesis are correlated with contradictions [187]. Indeed,

classifiers trained on the hypotheses only (ignoring the premises completely) report high

accuracy; they exhibit hypothesis bias, and achieving a high predictive performance does

not need models to discover relationships between the premise and the hypothesis. Other

artifacts are also possible. For example, annotators who generate text may use systematic

patterns that “leak” information about the label to a model. Or, perhaps models can learn

correlations that mimic reasoning, but only for one domain. With millions of parameters,

modern neural networks are prone to overfitting to such imperceptible patterns in the data.

From this perspective, if we seek to measure a model’s capability to understand and

reason about inputs, we cannot rely on a single fixed test set to rank models. Instead, we

need multiple test sets (of similar sizes) that have controlled differences from each other

to understand how models handle changes along those dimensions. While all the test sets

address the same task, they may not all be superficially similar to the training data.

With this objective, we build three test sets, named α1, α2 and α3. Here, we briefly

introduce them; §3.5 goes into specifics. Our first test set (α1) has a similar distribution as

the training data in terms of lexical makeup of the hypotheses and the premise domains.

The second, adversarial test set (α2), consists of examples that are also similar in dis-

tribution to the training set, but the hypothesis labels are changed by expert annotators

changing as few words in the sentence as possible. For instance, if Album X was released in

the 21st century is an entailment, the sentence Album X was released before the 21st century is a

contradiction, with only one change. Models that merely learn superficial textual artifacts

will get confused by the new sentences. For α2, we rewrite entailments as contradictions

and vice versa, while the neutrals are left unaltered.

Our third test set is the cross-domain (α3) set, which uses premises from domains that

are not in the training split, but generally, necessitate similar types of reasoning to arrive at
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the entailment decision. Models that overfit domain-specific artifacts will underperform

on α3.

Note that, in this work, we describe and introduce three different test sets, but we

expect that future work can identify additional dimensions along which models overfit

their training data and construct the corresponding test sets.

3.5 The InfoTabS Dataset
In this section, we will see the details of the construction of InfoTabS. We adapted the

general workflow of previous crowd sourcing approaches for creating NLI tasks [17] that

use Amazon’s Mechanical Turk.

3.5.1 Sources of Tables

Our dataset is based on 2, 540 unique info-boxes from Wikipedia articles across mul-

tiple categories (listed in Section 3.5.4). We did not include tables that have fewer than 3

rows, or have non-English cells (e.g., Latin names of plants) and technical information that

may require expertise to understand (e.g., astronomical details about exoplanets). We also

removed non-textual information from the table, such as images. Finally, we simplified

large tables into smaller ones by splitting them at sub-headings. Our tables are isomorphic

to key-value pairs, e.g., in Figure 3.1, the bold entries are the keys, and the corresponding

entries in the same row are their respective values.

3.5.2 Sentence Generation

Annotators were presented with a tabular premise and instructed to write three self-

contained grammatical sentences based on the tables: one of which is true given the table,

one which is false, and one which may or may not be true. The turker instructions included

illustrative examples using a table and also general principles to bear in mind, such as

avoiding information that is not widely known, and avoiding using information that is

not in the table (including names of people or places). The turkers were encouraged not to

restate information in the table, or make trivial changes such as the addition of words like

not or changing numerical values. We refer the reader to the project website for a snapshot

of the interface used for turking, which includes the details of instructions.

We restricted the turkers to be from English-speaking countries with at least a Master’s
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qualification. We priced each HIT (consisting of one table) at 50¢. Following the initial

turking phase, we removed grammatically bad sentences and rewarded workers whose

sentences involved multiple rows in the table with a 10% bonus.

3.5.3 Data Partitions

We annotated 2, 340 unique tables with nine sentences per table (i.e., three turkers per

table).2 We partitioned these tables into training, development (Dev), α1 and α2 test sets.

To prevent an outsize impact of influential turkers in a split, we ensured that the annotator

distributions in the Dev and test splits are similar to that of the training split.

We created the α2 test set from hypotheses similar to those in α1, but from a separate

set of tables, and perturbing them as described in §3.4. On an average, ∼ 2.2 words

were changed per sentence to create α2, with no more than 2 words changing in 72% of

the hypotheses. The provenance of α2 ensures that the kinds of reasoning needed for α2

are similar to those in α1 and the development set. For the α3 test set, we annotated 200

additional tables belonging to domains not seen in the training set (e.g., diseases, festivals).

As we will see in §3.8, hypotheses in these categories involve a set of similar types of

reasonings as α1, but with different distributions.

In total, we collected 23, 738 sentences split almost equally among entailments, contra-

dictions, and neutrals. Table 3.1 shows the number of tables and premise-hypothesis pairs

in each split. In all the splits, the average length of the hypotheses is similar. We refer the

reader to next section for additional statistics about the data.

3.5.4 InfoTabS Dataset Statistics

In this section, we provide some essential statistics that will help in a better under-

standing of the dataset.

Table 3.2 shows a split-wise analysis of premises and annotators. The table shows that

there is a huge overlap between the train set and the other splits except α3. This is expected

since α3 is from a different domain. Also, we observe that tables in α3 are longer. In the

case of annotators, we see that most of our dataset across all splits was annotated by the

2For tables with ungrammatical sentences, we repeated the HIT. As a result, a few tables in the final data
release have more than 9 hypotheses.
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same set of annotators.

Table 3.3 presents information on the generated hypotheses. The table lists the average

number of words in the hypotheses. This is important because a dissimilar mean value of

words would induce the possibility of length bias, i.e., the length of the sentences would

be a strong indicator for classification.

Table 3.4 shows the overlap between hypotheses and premise tables across various

splits. Stop words like a, the, it, of, etc. are removed. We observe that the overlap is almost

similar across labels.

Tables 3.5 and 3.6 show the distribution of table categories in each split. We accumulate

all the categories occurring for less than 3% for every split into the “Other” category.

3.5.5 Validating Hypothesis Quality

We validated the quality of the data using Mechanical Turk. For each premise-hypothesis

in the development and the test sets, we asked turkers to predict whether the hypothesis

is entailed or contradicted by, or is unrelated to the premise table. We priced this task at

36¢ for nine labels.

The inter-annotator agreement statistics are shown in Table 3.7, with detailed statistics

in Section 3.6. On all splits, we observed significant inter-annotator agreement scores with

Cohen’s Kappa scores [9] between 0.75 and 0.80. In addition, we see a majority agreement

(at least 3 out of 5 annotators agree) of range between 93% and 97%. Furthermore, the

human accuracy agreement between the majority and gold label (i.e., the label intended

by the writer of the hypothesis), for all splits is in range 80% to 84%, as expected given the

difficulty of the task.

3.6 Statistics of InfoTabS Verification
Table 3.8 shows the detailed agreement statistics of verification for the development

and the three test splits. For every premise-hypothesis pair, we asked five annotators to

verify the label. The table details the verification agreement among the annotators, and

also reports how many of these majority labels match the gold label (i.e., the label intended

by the author of the hypothesis). We also report individual annotator label agreement

by matching the annotator’s label with the gold label and majority label for an example.
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Finally, the table reports the Fleiss Kappa (across all five annotation labels) and the Cohen

Kappa (between majority and gold label) for the development and the three test splits.

We see that, on average, about 84.8% of individual labels match with the majority label

across all verified splits. Also, an average of 75.15% individual annotations also match the

gold label across all verified splits.

From Table 3.8, we can calculate the percentage of examples with at least 3, 4, and 5

label agreements across 5 verifiers for all splits. For all splits, we have very high inter-

annotator agreement of >95.85% for at-least 3, > 74.50% for at-least 4 and 43.91% for at-

least 5 annotators. The number of these agreements match with the gold label are: >81.76%

for at-least 3, > 67.09% for at-least 4 and 40.85% for at-least 5 for all splits.

3.7 Reasoning in InfoTabS

Our inventory of reasoning types is based on GLUE diagnostics [270], but is specialized

to the problem of reasoning about tables. Consequently, some categories from GLUE

diagnostics may not be represented here, or may be merged into one category.

We assume that the table is correct and complete. The former is always true for textual

entailment, where we assume that the premise is correct. The latter need not be generally

true. However, in our analysis, we assume that the table lists all the relevant information

for a field. For example, in a table for a music group as in Figure 3.2, if there is a row called

Labels, we will assume that the labels listed in that row are the only labels associated with

the group.

Note that a single premise-hypothesis pair may be associated with multiple types of

reasoning. If the same reasoning type is employed multiple times in the same pair, we

only mark it once. All definitions and their boundaries were verified via several rounds

of discussions. Following this, three graduate students independently annotated 160 pairs

from the Dev and α3 test sets each, and edge cases were adjudicated to arrive at consensus

labels.

3.7.1 Simple Lookup

This is the simple case where there is no reasoning, and the hypothesis is formed by

literally restating information in the table. For example, using the table in Figure 3.3,
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Femme aux Bras Croisés is privately held. is a simple lookup.

3.7.2 Multi-Row Reasoning

Multiple rows in the table are needed to make an inference. This has the strong re-

quirement that without multiple rows, there is no way to arrive at the conclusion. Exclude

instances where multiple rows are used only to identify the type of the entity, which is

then used to make an inference. The test for multi-row reasoning is: If a row is removed

from the table, then the label for the hypothesis may change.

3.7.3 Entity Type

Involves ascertaining the type of an entity in question (perhaps using multiple rows

from the table), and then using this information to make an inference about the entity.

This is separate from multi-row reasoning even if discovering the entity type might

require reading multiple rows in the table. The difference is a practical one: we want

to identify how many inferences in the data require multiple rows (both keys and values)

separately from the ones that just use information about the entity type. We need to be able

to identify an entity and its type separately to decide on this category. In addition, while

multi-row reasoning, by definition, needs multiple rows, entity type may be determined

by looking at one row. For instance, looking at Figure 3.3, one can infer that the entity type

is a painting by only looking at the row with key value Medium. Lastly, ascertaining the

entity type may require knowledge, but if so, then we will not explicitly mark the instance

as Knowledge & Common Sense. For example, knowing that SNL is a TV show will be

entity type and not Knowledge & Common Sense.

3.7.4 Lexical Reasoning

Any inference that can be made using words, independent of the context of the words

falls. For example, knowing that dogs are animals, and alive contradicts dead would fall

into the category of lexical reasoning. This type of reasoning includes substituting words

with their synonyms, hypernyms, hyponyms and antonyms. It also includes cases where

a semantically equivalent or contradicting word (perhaps belonging to a different root

word) is used in the hypothesis., e.g., replacing understand with miscomprehend. Lexical

reasoning also includes reasoning about monotonicity of phrases.
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3.7.5 Negation

Any explicit negation, including morphological negation (e.g., the word affected being

mapped to unaffected). Negation changes the morphology without changing the root word,

e.g., we have to add an explicit not.

This category includes double negations, which we believe is rare in our data. For

example, the introduction of the phrase not impossible would count as a double negation.

If the word understand in the premise is replaced with not comprehend, we are changing the

root word (understand to comprehend) and introducing a negation. So this change will be

marked as both Lexical reasoning and Negation.

3.7.6 Knowledge and Common Sense

This category is related to the World Knowledge and Common Sense categories from

GLUE. To quote the description from GLUE: “. . . the entailment rests not only on correct

disambiguation of the sentences, but also application of extra knowledge, whether it is

concrete knowledge about world affairs or more common-sense knowledge about word

meanings or social or physical dynamics.”

While GLUE differentiates between world knowledge and common sense, we found

that this distinction is not always clear when reasoning about tables. So we do not make

the distinction.

3.7.7 Named Entities

This category is identical to the Named Entities category from GLUE. It includes an

understanding of the compositional aspect of names (for example, knowing that the Uni-

versity of Hogwarts is the same as Hogwarts). Acronyms and their expansions fall into this

category (e.g., the equivalence of New York Stock Exchange as NYSE).

3.7.8 Numerical Reasoning

Any form of reasoning that involves understanding numbers, counting, ranking, inter-

vals and units falls under this group. This category also includes numerical comparisons

and the use of mathematical operators to arrive at the hypothesis.
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3.7.9 Temporal Reasoning

Any inferences that involves reasoning about time fall into this category. There may be

an overlap between other categories and this one. Any numerical reasoning about tempo-

ral quantities and the use of knowledge about time should be included here. Examples of

temporal reasoning: (a.) 9 AM is in the morning. (Since this is knowledge about time, we

will only tag this as Temporal.), (b.) 1950 is the 20th century., (c.) 1950 to 1962 is twelve

years., and (d.) Steven Spielberg was born in the winter of 1946. (If the table has the

date—18th December, 1946—and the location of birth—Ohio, this sentence will have both

knowledge & Common Sense and temporal reasoning. This is because one should be able

to tell that the birth location is in the northern hemisphere (knowledge) and December is

part of the Winter in the northern hemisphere (temporal reasoning)).

3.7.10 Coreference

This category includes cases where expressions refer to the same entity. However, we

do not include the standard gamut of coreference phenomena in this category because the

premise is not textual. We specifically include the following phenomena in this category:

Pronoun coreference, where the pronoun in a hypothesis refers to a noun phrase either

in the hypothesis or the table. E.g., Chris Jericho lives in a different state than he was born

in. A noun phrase (not a named entity) in the hypothesis refers to a name of an entity in

the table. For example, the table may say that Bob has three children, including John and the

hypothesis says that Bob has a son. Here the phrase a son refers to the name John.

If there is a pronoun involved, we should not treat it as entity type or knowledge even

though knowledge may be needed to know that, say, Theresa May is a woman and so we

should use the pronoun she.

To avoid annotator confusion, when two names refer to each other, we label it only as

the Named Entities category. For example, if the table talks about William Henry Gates III

and the hypothesis describes Bill Gates, even though the two phrases do refer to each other,

we will label this as Named Entities.

3.7.11 Quantification

Any reasoning that involves introducing a quantifier such as every, most, many, some,

none, at least, at most, etc. in the hypothesis. This category also includes cases where
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prefixes such as multi- (e.g., multi-ethnic) are used to summarize multiple elements in the

table.

To avoid annotator confusion, we decide that the mere use of quantifiers like most and

many is quantification. However, if the quantifier is added after comparing two numerical

values in the table, the sentence is labeled to have numerical reasoning as well.

3.7.12 Subjective/Out of Table

Subjective inferences refer to any inferences that involve either value judgment about

a proposition or a qualitative analysis of a numerical quantity. Out of table inferences in-

volve hypotheses that use extra knowledge that is neither a well known universal fact nor

common sense. Such hypotheses may be written as factive or implicative constructions.

Below are some examples of this category: (a.) Based on a table about Chennai: Chennai

is a very good city., (b.) If the table says that John’s height is 6 feet, then the hypothesis

that John is a tall person. may be subjective. However, if John’s height is 8 feet tall, then

the statement that John is tall. is no longer subjective, but common sense., (c.)If the table

only says that John lived in Madrid and Brussels, and the hypothesis is John lived longer in

Madrid than Brussels. This inference involves information that is neither well known nor

common sense., and (d.) Based on the table of the movie Jaws, the hypothesis It is known

that Spielberg directed Jaws falls in this category. The table may contain the information that

Spielberg was the director, but this may or may not be well known. The latter information

is out of the table.

3.7.13 Syntactic Alternations

This refers to a catch-all category of syntactic changes to phrases. This includes chang-

ing the preposition in a PP, active-passive alternations, dative alternations, etc. We expect

that this category is rare because the premise is not text. However, since there are some

textual elements in the tables, the hypothesis could paraphrase them.

This category is different from reasoning about named entities. If a syntactic alternation

is applied to a named entity (e.g., The Baltimore City Police being written as The Police of

Baltimore City), we will label it as a Named Entity if, and only if, we consider both phrases

as named entities. Otherwise, it is just a syntactic alternation. Below are some examples

of this category: (a.) New Orleans police officer being written as police officer of New Orleans.,
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and (b.) Shakespeare’s sonnet being written as sonnet of Shakespeare.

3.7.14 Ellipsis

This category is similar in spirit to the category Ellipsis/Implicits in GLUE: “An argu-

ment of a verb or another predicate is elided in the text, with the reader filling in the gap.” 

Since in our case, the only well-formed text is in the hypothesis, we expect such gaps only 

in the hypothesis. (Compared to GLUE, where the description makes it clear that the gaps 

are in the premises and the hypotheses are constructed by filling i n t he g aps w ith either 

correct or incorrect referents.). For example, in a table about Norway that lists the per 

capita income as $74K, the hypothesis that The per capita income is $74K. elides the fact that 

this is about citizens of Norway, and not in general.

3.8 Reasoning Analysis

Figures 3.4 and 3.5 summarize these annotation efforts. We see that we have a multi-

faceted complex range of reasoning types across both sets. Importantly, we observe only a 

small number of simple lookups, simple negations for contradictions, and mere syntactic 

alternations that can be resolved without complex reasoning. Many instances call for 

looking up multiple rows, and involve temporal and numerical reasoning. Indeed, as 

Figures 3.6 and 3.7 show a large number of examples need at least two distinct kinds of 

reasoning; on an average, sentences in the Dev and α3 sets needed 2.32 and 1.79 different 

kinds of reasoning, respectively.

We observe that semi-structured premises forced annotators to call upon world knowl-

edge and common sense (KCS); 48.75% instances in the Dev set require KCS. (In compar-

ison, in the MultiNLI data, KCS is needed in 25.72% of examples.) We conjecture that 

this is because information about the entities and their types is not explicitly stated in 

tables, and have to be inferred. To do so, our annotators relied on their knowledge about 

the world including information about weather, seasons, and widely known social and 

cultural norms and facts. An example of such common sense is the hypothesis that “X was 

born in summer” for a person whose date of birth is in May in New York. We expect that the 

InfoTabS data can serve as a basis for studying common sense reasoning alongside other 

recent work such as that of [247].



30

Neutral hypotheses are more inclined to being subjective/out-of-table because almost

anything subjective or not mentioned in the table is a neutral statement. Despite this, we

found that in all evaluations in Section 3.9.3.6 (except those involving the adversarial α2

test set), our models found neutrals almost as hard as the other two labels, with only an

≈ 3% gap between the F-scores of the neutral label and the next best label.

The distribution of train, dev, α1 and α2 are similar because the premises are taken from

the same categories. However, tables for α3 are from different domains, hence not of the

same distribution as the previous splits. This difference is also reflected in Figures 3.4

and 3.5, as we see a different distribution of reasonings for each test set. This is expected;

for instance, we cannot expect temporal reasoning from tables in a domain that does not

contain temporal quantities.

3.9 Experiments and Results
The goal of our experiments is to study how well different modeling approaches ad-

dress the InfoTabS data, and also to understand the impact of various artifacts on them.

First, we will consider different approaches for representing tables in ways that are amenable

to modern neural models.

3.9.1 Representing Tables

A key aspect of the InfoTabS task that does not apply to the standard NLI task concerns

how premise tables are represented. As baselines for future work, let us consider several

different approaches.

1. Premise as Paragraph (Para): We convert the premise table into paragraphs using

fixed template applied to each row. For a table titled t, a row with key k and value

v is written as the sentence The k of t are v. For example, for the table in Figure 3.1,

the row with key Equipment gets mapped to the sentence The equipment of Dressage

are horse, horse tack. We have a small number of exceptions: e.g., if the key is born or

died, we use the following template: t was k on v.

  The sentences from all the rows in the table are concatenated to form the 

premise paragraph. While this approach does not result in grammatical sentences, 

it fits the interface for standard sentence encoders.



31

2. Premise as Sentence (Sent): Since hypotheses are typically short, they may be de-

rived from a small subset of rows. Based on this intuition, we use the word mover

distance [133] to select the closest and the three closest sentences to the hypothesis

from the paragraph representation (denoted by WMD-1 and WMD-3, respectively).

3. Premise as Structure 1 (TabFact): Following [26], we represent tables by a sequence

of key : value tokens. Rows are separated by a semi-colon and multiple values for

the same key are separated by a comma.

4. Premise as Structure 2 (TabAttn): To study an attention based approach, such as

that of [193], we convert keys and values into a contextually enriched vectors by

first converting them into sentences using the Para approach above, and applying

a contextual encoder to each sentence. From the token embeddings, we obtain the

embeddings corresponding of the keys and values by mean pooling over only those

tokens.

3.9.2 Modeling Table Inferences

Based on the various representations of tables described above, we developed a col-

lection of models for the table inference problem, all based on standard approaches for

NLI. Due to space constraints, we give a brief description of the models here and refer the

interested reader to the code repository for implementation details.

For experiments where premises are represented as sentences or paragraphs, we eval-

uated a feature-based baseline using unigrams and bigrams of tokens. For this model

(referred to as SVM), we used the LibLinear library [62].

For these representations, we also evaluated a collection of BERT-class of models. Fol-

lowing the standard setup, we encoded the premise-hypothesis pair, and used the classifi-

cation token to train a classifier, specifically a two-layer feedforward network that predicts

the label. The hidden layer had half the size of the token embeddings. We compared

RoBERTaL (Large), RoBERTaB (Base) and BERTB (Base) in our experiments.

We used the above BERT strategy for the TabFact representations as well. For the

TabAttn representations, we implemented the popular decomposable attention model [193]

using the premise key-value embeddings and hypothesis token embeddings with 512 di-

mensional attend and compare layers.
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We implemented all our models using the PyTorch with the transformers library [281].

We trained our models using Adagrad with a learning rate of 10−4, chosen by preliminary

experiments, and using a dropout value of 0.2. All our results in the following sections are

averages of models trained from three different random seeds.

3.9.3 Experimental Results

Our experiments answer a series of questions.

3.9.3.1 Does our dataset exhibit hypothesis bias?

Before we consider the question of whether we can model premise-hypothesis relation-

ships, let us first see if a model can learn to predict the entailment label without using the

premise, thereby exhibiting an undesirable artifact. We consider three classes of models to

study hypothesis bias in InfoTabS.

Hypothesis Only (hypo-only): The simplest way to check for hypothesis bias is to train a

classifier using only the hypotheses. Without a premise, a classifier should fail to correlate

the hypothesis and the label. We represent the hypothesis in two ways a) using unigrams

and bigrams for an SVM, and b) using a single-sentence BERT-class model. The results of

the experiments are given in Table 3.9.

Dummy or Swapped Premise: Another approach to evaluate hypothesis bias is to provide

an unrelated premise and train a full entailment model. We evaluated two cases, where

every premise is changed to a (a) dummy statement (to be or not to be), or (b) a randomly

swapped table that is represented as paragraph. In both cases, we trained a RoBERTaL

classifier as described in §3.9.2. The results for these experiments are presented in Table

3.10.

Results and Analysis: Looking at the Dev and α1 columns of Tables 3.9 and 3.10, we

see that these splits do have hypothesis bias. All the BERT-class models discover such

artifacts equally well. However, we also observe that the performance on α2 and α3 data

splits is worse since the artifacts in the training data do not occur in these splits. We see

a performance gap of ∼ 12% as compared to Dev and α1 splits in all cases. While there is

some hypothesis bias in these splits, it is much less pronounced.

An important conclusion from these results is that the baseline for all future models

trained on these splits should be the best premise-free performance. From the results here,
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these correspond to the swapped setting.

3.9.3.2 How do trained NLI systems perform on our dataset?

Given the high leaderboard accuracies of trained NLI systems, the question of whether

these models can infer entailment labels using a linearization of the tables arises. To study

this, we trained RoBERTaL models on the SNLI and MultiNLI datasets. The SNLI model

achieves an accuracy of 92.56% on SNLI test set. The MultiNLI model achieves an accuracy

of 89.0% on matched and 88.99% on the mismatched MultiNLI test set. We evaluate these

models on the WMD-1 and the Para representations of premises.

Results and Analysis: In Table 3.11, all the results point to the fact that pre-trained NLI

systems do not perform well when tested on InfoTabS. We observe that full premises

slightly improve performance over the WMD-1 ones. This might be due to a) ineffective-

ness of WMD to identify the correct premise sentence, and b) multi-row reasoning.

3.9.3.3 Does training on the paragraph/sentence
representation of a premise help?

The next set of experiments compares BERT-class models and SVM trained using the

paragraph (Para) and sentence (WMD-n) representations. The results for these experi-

ments are presented in Table 3.12.

Results and Analysis: We find that training with the InfoTabS training set improves

model performance significantly over the previous baselines, except for the simple SVM

model which relies on unigrams and bigrams. We see that RoBERTaL outperforms its

base variant and BERTB by around ∼ 9% and ∼ 14% respectively. Similar to the earlier

observation, providing full premise is better than selecting a subset of sentences.

Importantly, α2 and α3 performance is worse than α1, not only suggesting the difficulty

of these data splits, but also showing that models overfit both lexical patterns (based on

α2) or domain-specific patterns (based on α3).

3.9.3.4 Does training on premise encoded as structure help?

Rather than linearizing the tables as sentences, we can try to encode the structure of

the tables. We consider two representative approaches for this, TabFact and TabAttn, each

associated with a different model as described in §3.9.2. The results for these experiments
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are listed in Table 3.13.

Results and Analysis: The idea of using this family of models was to leverage the 

structural aspects of our data. We find that the TabAttn model, however, does not improve 

the performance. We assume that this might be due to the bag of words style of repre-

sentation that the classifier e mploys. We find, however, that providing premise structure 

information helps the TabFact model perform better than the RoBERTaL+Para model. As 

before model performance drops for α2 and α3.

3.9.3.5 How many types of reasoning does
a trained system predict correctly?

   Using a RoBERTaL, which was trained on the paragraph (Para) representation, we 

analyzed the examples in Dev and α3 data splits that were annotated by experts for their 

types of reasoning (§3.8). Figures 3.8 and 3.9 show the summary of this analysis.

Results and Analysis: Figures 3.8 and 3.9 show the histogram of reasoning types among 

correctly predicted examples. Compared to Figures 3.4 and 3.5, we see a decrease in correct 

predictions across all reasoning types for both Dev and α3 sets. In particular, in the Dev set, 

the model performs poorly for the knowledge & common sense, multi-row, coreference, 

and temporal reasoning categories.

3.9.3.6 Labelwise F1 score analysis

The F1 scores per label for two model baselines are in Table 3.14. We observe that 

neutral is easier than entailment and contradiction for both baseline, which is expected as 

neutrals are mostly associated with subjective/out-of-table reasonings which makes them 

syntactically different and easier to predict correctly. Despite this, we found that in all 

evaluations in (§7.6) (except for α2 test set), our models found neutrals almost as hard as the 

other two labels, with only an ∼ 3% gap between the F-scores of the neutral label and the 

next best label. For α2 test set neutral are much easier than entailment and contradiction. 

This is expected as entailment and contradiction in α2 were adversarially flipped; hence, 

these predictions become remarkably harder compared to neutrals. Furthermore, α3 is the 

hardest data split, followed by α2 and α1.



35

3.9.3.7 Discussion

Our results show that: 1) InfoTabS contains a certain amount of artifacts which transformer-

based models learn, but all models have a large gap to human performance; and 2) models

accuracies drop on α2 and α3, suggesting that all three results together should be used to

characterize the model, and not any single one of them. All our models are significantly

worse than the human performance (84.04%, 83.88% and 79.33% for α1, α2 and α3 respec-

tively). With a difference of ∼ 14% between our best model and the human performance,

these results indicate that InfoTabS is a challenging dataset.

3.10 Conclusion
We presented a new high quality natural language inference dataset, InfoTabS, with

heterogeneous semi-structured premises and natural language hypotheses. Our analysis

showed that our data encompasses several different kinds of inferences. InfoTabS has

multiple test sets that are designed to pose difficulties to models that only learn superficial

correlations between inputs and the labels, rather than reasoning about the information.

Via extensive experiments, we showed that derivatives of several popular classes of mod-

els find this new inference task challenging. We expect that the dataset can serve as a

testbed for developing new kinds of models and representations that can handle semi-

structured information as first class citizens.
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Dressage

Highest governing body International Federation for Equestrian Sports
(FEI)

Characteristics
Contact No
Team members Individual and team at international levels
Mixed gender Yes
Equipment Horse, horse tack
Venue Arena, indoor or outdoor

Presence
Country or region Worldwide
Olympic 1912
Paralympic 1996

H1: Dressage was introduced in the Olympic games in 1912.

H2: Both men and women compete in the equestrian sport of Dressage.

H3: A dressage athlete can participate in both individual and team events.

H4: FEI governs dressage only in the U.S.

Figure 3.1: A semi-structured premise (the table). Two hypotheses (H1, H2) are entailed by it, H3 
is neither entailed nor contradictory, and H4 is a contradiction.

  Kamloops

Type Elected city council
Mayor Ken Christian
Governing body Kamloops City Council
MP Cathy McLeod
MLAs Peter Milobar, Todd Stone

H1: Kamloops has a democracy structure.

H2: If Ken Christian resigns as Mayor of Kamloops then Cathy McLeod will most likely replace
him.

H3: Kamloops is ruled by a president.

Jefferson Starship

Origin San Francisco California
Genres Rock, hard rock, psychedelic rock, progressive

rock, soft rock
Years active 1970 - 1984, 1992 - present
Labels RCA Grunt Epic
Associated acts Jefferson Airplane Starship, KBC Band, Hot Tuna
Website www.jeffersonstarship.net

H1: Jefferson Starship was started on the West Coast of the United States.

H2: Jefferson Starship won many awards for its music.

H3: Jefferson Starship has performed continuously since the 1970s.

Figure 3.2: Two semi-structured premises (the tables), and three hypotheses (H1: entailment, H2:
Neutral, and H3: contradiction) that correspond to each table.
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Femme aux Bras Croisés

Artist Pablo Picasso
Year 1901-02
Medium Oil on canvas
Dimensions 81 cm 58 cm (32 in 23 in)
Location Privately held

Figure 3.3: An example premise.
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Figure 3.4: Number of examples per reasoning type in the dev set.
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Figure 3.5: Number of examples per reasoning type in the α3 set.
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Figure 3.6: Number of reasonings per example in the dev set.
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Figure 3.7: Number of reasonings per example in the α3 set.
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Figure 3.8: Number of correct predictions per reasoning type in the dev set.
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Figure 3.9: Number of correct predictions per reasoning type in the α3 test set.
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Table 3.1: Number of tables and premise-hypothesis pairs for each data split.

Data split # tables # pairs

Train 1740 16538
Dev 200 1800
α1 test 200 1800
α2 test 200 1800
α3 test 200 1800

Table 3.2: Statistics of the premises and annotators across all discussed train-test splits.

Split Train Dev α1 α2 α3

Number of Unique Keys 1558 411 466 332 409
Number of Unique Keys Intersection with Train - 334 312 273 94
Average # of keys per table 8.8 8.7 8.8 8.8 13.1
Number of Distinct Annotators 121 35 37 31 23
Annotator Intersection with Train - 33 37 30 19
Number of Instances annotated by a Train annotator - 1794 1800 1797 1647

Table 3.3: Mean length of the generated hypothesis sentences across all discussed train-test splits
(standard deviation is in range 2.8 to 3.5).

Label Train Dev α1 α2 α3

Entail 9.80 9.71 9.90 9.33 10.5
Neutral 9.84 9.89 10.0 9.59 9.84
Contradict 9.37 9.72 9.84 9.40 9.86

Table 3.4: Mean statistic of the hypothesis sentences word overlapped with premises tables across
all discussed train-test splits (standard deviation is in range 0.17 to 0.22).

Label Train Dev α1 α2 α3

Entail 0.52 0.47 0.45 0.46 0.48
Neutral 0.46 0.44 0.44 0.49 0.46
Contradict 0.44 0.43 0.45 0.44 0.46
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Table 3.5: Categories for all data splits (excluding α3) in percentage (%). Others (< 3%) include
categories such as University, Event, Aircraft, Product, Game, Architecture, Planet, Awards, Wine-
yard, Airport, Language, Element, Car.

Category Train Dev α1 α2 Category Train Dev α1 α2

Person 23.68 27 28.5 35.5 Musician 14.66 19 18.5 22.5
Movie 10.17 10 9 11.5 Album 9.08 7 3.5 4.5
City 8.05 8.5 8 7 Painting 5.98 4.5 4 3.5
Organization 4.14 2 1 0.5 Food / Drinks 4.08 4 4 3
Country 3.74 6 9 3.5 Animal 3.56 4.5 4 4
Sports 4.6 3.5 2.5 0.0 Book 2.18 0.5 3 2.5
Other 6.07 8.00 5.00 2.00

Table 3.6: Categories for α3 datasplit. Others (< 3%) include categories such as Computer,
Occupation, Restaurant, Engines, Equilibrium, OS, Cloud, Bus/Train Station, Coffee House, Cars,
Bus/Train Provider, Hotel, Math, Flight.

Category α3 (%) Category α3 (%)

Diseases 20.4 Festival 17.41
Bus / Train Lines 14.93 Exams 8.46
Element 4.98 Exams 8.46
Bridge 3.98 Disasters 3.48
Smartphone 3.48 Other 18.9

Table 3.7: Inter-annotator agreement statistics.

Dataset Cohen’s Kappa Human Accuracy Majority Agreement

Dev 0.78 79.78 93.52
α1 0.80 84.04 97.48
α2 0.80 83.88 96.77
α3 0.74 79.33 95.58
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Table 3.8: Exact, Individual and Kappa values for verification’s statistics.

Exact agreement between annotators.

Dataset Number Gold/Total

3 350 / 469
Dev 4 529 / 601

5 550 / 605
no agreement 116

3 184 / 292
α1 4 459 / 533

5 863 / 922
no agreement 45

3 245 / 348
α2 4 453 / 537

5 812 / 857
no agreement 58

3 273 / 422
α2 4 441 / 524

5 706 / 765
no agreement 79

Individual agreement with gold / majority label.

Dataset Statistics Agreement (%)

Dev Gold 71.12
Majority 81.65

α1 Gold 78.52
Majority 87.24

α2 Gold 77.74
Majority 86.32

α3 Gold 73.22
Majority 84.01

Average Gold 75.15
Majority 84.8

Kappa values across splits

Dataset Fleiss Cohen

Dev 0.4601 0.7793
α1 0.6375 0.7930
α2 0.5962 0.8001
α3 0.5421 0.7444
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Table 3.9: Accuracy of hypothesis-only baselines on the InfoTabS Dev and test sets.

Model Dev α1 α2 α3

Majority 33.33 33.33 33.33 33.33
SVM 59.00 60.61 45.89 45.89
BERTB 62.69 63.45 49.65 50.45
RoBERTaB 62.37 62.76 50.65 50.8
RoBERTaL 60.51 60.48 48.26 48.89

Table 3.10: Accuracy with dummy/swapped premises.

Premise Dev α1 α2 α3

dummy 60.02 59.78 48.91 46.37
swapped 62.94 65.11 52.55 50.21

Table 3.11: Accuracy of test splits with structured representation of premises with RoBERTaL
trained on SNLI and MultiNLI training data.

Premise Dev α1 α2 α3

Trained on SNLI
WMD-1 49.44 47.5 49.44 46.44

Para 54.44 53.55 53.66 46.01

Trained on MultiNLI
WMD-1 44.44 44.67 46.88 44.01

Para 55.77 53.83 55.33 47.28

Table 3.12: Accuracy of paragraph and sentence premise representation reported on SVM, BERTB,
RoBERTaB and RoBERTaL.

Premise Dev α1 α2 α3

Train with SVM
Para 59.11 59.17 46.44 41.28

Train with BERTB
Para 63.00 63.54 52.57 48.17

Train with RoBERTaB
Para 67.2 66.98 56.87 55.36

Train with RoBERTaL
WMD-1 65.44 65.27 57.11 52.55
WMD-3 72.55 70.38 62.55 61.33

Para 75.55 74.88 65.55 64.94
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Table 3.13: Accuracy on structured premise representation reported on BERTB, RoBERTaB and
RoBERTaL.

Premise Dev α1 α2 α3

Train with BERTB
TabFact 63.67 64.04 53.59 49.05

Train with RoBERTB
TabFact 68.06 66.7 56.87 55.26

Train with RoBERTaL
TabAttn 63.63 62.94 49.37 49.04
TabFact 77.61 75.06 69.02 64.61

Table 3.14: F1 Score (%) with various baselines. All models are trained with RoBERTaL.

Premise as Paragraph

Split Entailment Neutral Contradiction

Dev 76.19 79.02 72.73
α1 74.69 77.85 69.85
α2 57.06 80.36 62.14
α3 65.27 66.06 61.61

Premise as TabFact

Split Entailment Neutral Contradiction

Dev 77.69 79.45 74.77
α1 76.43 80.34 73.07
α2 55.34 80.83 64.44
α3 65.92 67.28 63.57



CHAPTER 4

KNOWLEDGE INTEGRATION

PRE-PROCESSING

Adapted from J. Neeraja, V. Gupta, V. Srikumar, Incorporating external knowledge to en-

hance tabular reasoning, in Proceedings of the 2021 Conference of North American Chapter

of the Association for Computational Linguistics: Human Language Technologies, Online,

June 6–11, 2021, Association for Computational Linguistics, pp. 2799–2809.

In this Chapter, we argue that instead of relying on the neural network to “magically”

work for tabular structures, as done in Chapter 3, we should carefully think about the

representation of semi-structured data, and the incorporation of both implicit and ex-

plicit knowledge into neural models. We highlights that simple pre-processing steps are

important, especially for better generalization. Using the InfoTabS dataset as discussed

in Chapter 3, we present a focused study that investigates (a) the poor performance of

existing models, (b) connections to information deficiency in the tabular premises, and,

(c) simple yet effective mitigations for these problems.

We use the table and hypotheses in Figure 4.1 as a running example through this

chapter, and refer to the left column as its keys.1 Tabular inference is challenging for

several reasons: (a) Poor table representation: The table does not explicitly state the

relationship between the keys and values. (b) Missing implicit lexical knowledge due

to limited training data: This affects interpreting words like ‘fewer’, and ‘over’ in H1 and

H2 respectively. (c) Presence of distracting information: All keys except No. of listings are

unrelated to the hypotheses H1 and H2. (d) Missing domain knowledge about keys: We

need to interpret the key Volume in the financial context for this table.

In the absence of large labeled corpora, any modeling strategy needs to explicitly ad-

dress these problems. In this chapter, we propose effective approaches for addressing

1Keys in the InfoTabS tables are similar to column headers in the TabFact database-style tables.
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them, and show that they lead to substantial improvements in prediction quality, espe-

cially on adversarial test sets. We recommend that these pre-processing steps should be

standardized across table reasoning tasks.2

4.1 Contributions
This chapter makes the following contributions:

1. We analyse why the existing state-of-the-art BERT class models struggle on the chal-

lenging task of NLI over tabular data.

2. We propose solutions to overcome these challenges via simple modifications to in-

puts using existing language resources.

3. Through extensive experiments, we show significant improvements to model perfor-

mance, especially on challenging adversarial test sets.

This work is published at NAACL 2021 as [182].

4.2 Background
There have been many works which study several NLP tasks on semi-structured tab-

ular data. These include tabular NLI and fact verification tasks such as TabFact [26],

and InfoTabS [84], various question answering and semantic parsing tasks [1, 27, 128,

151, 195, 245], and table-to-text generation and its evaluation [194, 207]. Several, models

for better representation of tables such as TAPAS [94], TaBERT [291], and TabStruc [300]

were recently proposed. [294, 295] and [58] study pre-training for improving tabular

inference, similar to our MutliNLI pre-training. However, much of these recent work

focuses on building sophisticated neural models, without explicit focus on how these

models (designed for raw text) adapt to the tabular data. The proposed modifications

we proposed in this chapter are simple and intuitive. Yet, existing table reasoning papers

have not studied the impact of such input modifications.

4.3 Challenges and Proposed Solutions
We examine the issues highlighted above and propose simple solutions to mitigate

them below.

2The updated dataset, along with associated scripts, are available at https://knowledge-infotabs.github.
io.

https://knowledge-infotabs.github.io
https://knowledge-infotabs.github.io
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4.3.1 Better Table Representation (BTR)

One way to represent the premise table is to use a universal template to convert each

row of the table into sentence which serves as input to a BERT-style model. [84] suggest

that in a table titled t, a row with key k and value v should be converted to a sentence

using the template: “The k of t are v.” Despite the advantage of simplicity, the approach

produces ungrammatical sentences. In our example, the template converts the Founded

row to the sentence “The Founded of New York Stock Exchange are May 17, 1792; 226 years

ago.”.

We note that keys are associated with values of specific entity types such as MONEY,

DATE, CARDINAL, and BOOL, and the entire table itself has a category. Therefore, we

propose type-specific templates, instead of using the universal one.3 In our example, the

table category is Organization and the key Founded has the type DATE. A better template

for this key is “t was k on v”, which produces the more grammatical sentence ”New York

Stock Exchange was Founded on May 17, 1792; 226 years ago.”. Furthermore, we observe that

including the table category information i.e. “New York Stock Exchange is an Organization.”

helps in better premise context understanding.4

4.3.2 BPR Templates

Here, we are listing down some of the diverse example templates we have framed.

• For the table category Bus/Train Lines and key Disabled access with BOOL value YES,

follow template: ”t has k.”
Original Premise Sentence“The Disabled access of Tukwila International Boulevard Station are
Yes.”

BPR Sentence“Tukwila International Boulevard Station has Disabled access.”

• For the table category Movie and key Box office with MONEY type, follow template:

”In the k, t made v.”
Original Premise Sentence“The Box office of Brokeback Mountain are $178.1 million.”

BPR Sentence“In the Box office, Brokeback Mountain made $178.1 million.”

• For the table category City and key Total with CARDINAL type, follow template: ”The

k area of t is v.”

3The construction of the template sentences based on entity type is a one-time manual step.

4This category information is provided in the InfoTabS and TabFact datasets. For other datasets, it can be
inferred easily by clustering over the keys of the training tables.
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Original Premise Sentence“The Total of Cusco are 435,114.”

BPR Sentence“The Total area of Cusco is 435,114.”

• For the table category Painting and key Also known as, follow template: ”The k area

of t is v.”

Original Premise Sentence“The Also known as of Et in Arcadia ego are Les Bergers d’Arcadie.”

BPR Sentence“Et in Arcadia ego is Also known as Les Bergers d’Arcadie.”

• For the table category Person and key Died with DATE type , follow template: ”t k on

v.”
Original Premise Sentence“The Died of Jesse Ramsden are November 1800 (1800-11-05) (aged
65) Brighton, Sussex.”

BPR Sentence“Jesse Ramsden Died on 5 November 1800 (1800-11-05) (aged 65) Brighton, Sussex.”

4.3.3 Implicit Knowledge Addition (KG Implicit)

Tables represent information implicitly; they do not employ connectives to link their

cells. As a result, a model trained only on tables struggles to make lexical inferences about

the hypothesis, such as the difference between the meanings of ‘before’ and ‘after’, and the

function of negations. This is surprising, because the models have the benefit of being

pre-trained on large textual corpora.

Recently, [6] and [205] showed that we can pre-train models on specific tasks to incor-

porate such implicit knowledge. [58] use pre-training on synthetic data to improve the

performance on the TabFact dataset. Inspired by these, we first train our model on the

large, diverse and human-written MultiNLI dataset. Then, we fine tune it to the InfoTabS

task. Pre-training with MultiNLI data exposes the model to diverse lexical constructions.

Furthermore, it increases the training data size by 433K (MultiNLI) example pairs. This

makes the representation better tuned to the NLI task, thereby leading to better general-

ization.

4.3.4 Distracting Rows Removal (DRR)

Not all premise table rows are necessary to reason about a given hypothesis. In our

example, for the hypotheses H1 and H2, the row corresponding to the key No. of listings

is sufficient to decide the label for the hypothesis. The other rows are an irrelevant dis-

traction. Further, as a practical concern, when longer tables are encoded into sentences as

described above, the resulting number of tokens is more than the input size restrictions of
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existing models, leading to useful rows potentially being cropped. Therefore, it becomes

important to prune irrelevant rows.

To identify relevant rows, we employ a simplified version of the alignment algorithm

used by [287, 288] for retrieval in reading comprehension.

First, every word in the hypothesis sentence is aligned with the most similar word

in the table sentences using cosine similarity. We use fastText [115, 168] embeddings for

this purpose, which preliminary experiments revealed to be better than other embeddings.

Then, we rank rows by their similarity to the hypothesis, by aggregating similarity over

content words in the hypothesis. [287] used inverse document frequency for weighting

words, but we found that simple stop word pruning was sufficient. We took the top k

rows by similarity as the pruned representative of the table for this hypothesis. The hyper-

parameter k is selected by tuning on a development set.

4.3.4.1 fastText representation

For word representation, [287] have used BERT and Glove embeddings. In our case,

we prefer to use fastText word embeddings over Glove because fastText embedding uses

sub-word information which helps in capturing different variations of the context words.

Furthermore, fastText embeddings is also as better choice than BERT for our task because

1. Firstly, we are embedding single sentential form of diverse rows instead of longer con-

text similar paragraphs, 2. Secondly, all words (especially keys) of the rows across all the

tables are used only in one context, whereas BERT is useful when same word is used with

different contexts across paragraphs, 3. Thirdly, in all tables, the number sentences to select

from is bounded by maximum rows in the table, which is a small number (8.8 in train, dev,

α1, α2 and 13.1 in α3), and 4. Lastly, using fastText is much faster to compute than BERT for

obtaining embeddings.

4.3.4.2 Binary weighting scheme

Since, we are embedding single sentential form of diverse rowsinstead of longer con-

text related paragraphs, we found that using binary weighting 0 for stop words and 1 for

others is more effective than the idf weighting, which is useful only for longer paragraph

context with several lexical terms.
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4.3.5 Explicit Knowledge Addition (KG Explicit)

We found that adding explicit information to enrich keys improves a model’s ability to

disambiguate and understand them. We expand the pruned table premises with contex-

tually relevant key information from existing resources such as WordNet (definitions) or

Wikipedia (first sentence, usually a definition).5

To find the best expansion of a key, we use the sentential form of a row to obtain the

BERT embedding (on-the-fly) for its key. We also obtain the BERT embeddings of the same

key from WordNet examples (or Wikipedia sentences).6 Finally, we concatenate the Word-

Net definition (or the Wikipedia sentence) corresponding to the highest key embedding

similarity to the table. As we want the contextually relevant definition of the key, we

use the BERT embeddings rather than non-contextual ones (e.g., fastText). For example,

the key volume can have different meanings in various contexts. For our example, the

contextually best definition is “In capital markets, volume, is the total number of a security that

was traded during a given period of time.” rather than the other definition “In thermodynamics,

the volume of a system is an extensive parameter for describing its thermodynamic state.”.

4.4 Experiment and Analysis
Our experiments are designed to study the research question: Can today’s large pre-

trained models exploit the information sources described in §4.3 to better reason about tabular

information?

4.4.1 Experimental Setup

4.4.1.1 Datasets

Our experiments uses InfoTabS, a tabular inference dataset from [84]. The dataset is

heterogeneous in the types of tables and keys, and relies on background knowledge and

common sense. Unlike the TabFact dataset [26], it has all three inference labels, namely

entailment, contradiction and neutral. Importantly, for the purpose of our evaluation, it

has three test sets. In addition to the usual development set and the test set (called α1), the

5Usually multi-word keys are absent in WordNet, in this case we use Wikipedia. The WordNet definition
of each word in the key is used if the multi-word key is absent in Wikipedia.

6We prefer using WordNet examples over definition for BERT embedding because (a) an example captures
the context in which key is used, and (b) the definition may not always contain the key tokens.
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dataset has two adversarial test sets: a contrast set α2 that is lexically similar to α1, but with

minimal changes in the hypotheses and flip entail-contradict label, and a zero-shot set α3

which has long tables from different domains with little key overlap with the training set.

4.4.1.2 Models

For a fair comparison with earlier baselines, we use RoBERTa-large (RoBERTaL) for

all our experiments. We represent the premise table by converting each table row into a

sentence, and then appending them into a paragraph, i.e. the Para representation of [84].

4.4.1.3 Hyperparameters settings

For the distracting row removal (+DRR) step, we have a hyper-parameter k. We ex-

perimented with k ∈ {2, 3, 4, 5, 6}, by predicting on +DRR development premise on model

trained on Original training set (i.e. BTR), as shown in Table 4.1. The development ac-

curacy increases significantly as k increases from 2 to 4 and then from 4 to 6, increases

marginally ( 1.5% improvement). Since our goal is to remove distracting rows, we use the

lowest hyperparameter with good performance i.e. k = 4.7.

4.4.2 Results and Analysis

Table 4.2 shows the results of our experiments.

4.4.2.1 BTR

As shown in Table 4.2, with BTR, we observe that the RoBERTaL model improves

performance on all dev and test sets except α3. There are two main reasons behind this

poor performance on α3.

First, the zero-shot α3 data includes unseen keys. The number of keys common to α3

and the training set is 94, whereas for, dev, α1 and α2 it is 334, 312, and 273 respectively (i.e.,

3-5 times more). Second, despite being represented by better sentences, due to the input

size restriction of RoBERTaL some relevant rows are still ignored.

7Indeed, the original InfoTabS work points out that no more than four rows in a table are needed for any
hypothesis.
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4.4.2.2 KG implicit

We observe that implicit knowledge addition via MNLI pre-training helps the model

reason and generalize better. From Table 4.2, we can see significant performance improve-

ment in the dev and all three test sets.

4.4.2.3 DRR

This leads to significant improvement in the α3 set. We attribute this to two primary

reasons: First, α3 tables are longer (13.1 keys per table on average, versus 8.8 keys on

average in the others), and DRR is important to avoid automatically removing keys from

the bottom of a table due to the limitations in RoBERTaL model’s input size. Without these

relevant rows, the model incorrectly predicts the neutral label. Second, α3 is a zero-shot

dataset and has significant proportion of unseen keys which could end up being noise for

the model. The slight decrease in performance on the dev, α1 and α2 sets can be attributed

to model utilising spurious patterns over irrelevant keys for prediction.8 We validated

this experimentally by testing the original premise trained model on the DRR test tables.

Table 4.3 shows that without pruning, the model focuses on irrelevant rows for prediction.

4.4.2.4 KG explicit

With explicit contextualized knowledge about the table keys, we observe a marginal

improvement in dev, α1 test sets and a significant performance gain on the α2 and α3

test sets. Improvement in the α3 set shows that adding external knowledge helps in the

zero-shot setting. With α2, the model can not utilize spurious lexical correlations9 due to

its adversarial nature, and is forced to use the relevant keys in the premise tables, thus

adding explicit information about the key improves performance more for α2 than α1 or

dev. Appendix A shows some qualitative examples.

8Performance drop of dev and α2 is also marginal i.e. (dev: 79.57 to 78.77, α1: 78.27 to 78.13, α2: 71.87 to
70.90), as compared to InfoTabS WMD-top3 i.e (dev: 75.5 to 72.55,α1: 74.88 to 70.38, α2: 65.44 to 62.55), here
WMD-top3 performance numbers are taken from [84].

9The hypothesis-only baseline for α2 is 48.5% versus α1: 60.5 % and dev: 60.5 % [84].
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4.4.3 Ablation Study

We perform an ablation study as shown in Table 4.4, where instead of doing all modifi-

cation sequentially one after another (+), we do only one modification at a time to analyze 

its effects.

Through our ablation study we observe that: (a) DRR improves performance on the 

dev, α1, and α2 sets, but slightly degrades it on the α3 set. The drop in performance on α3 is 

due to spurious artifact deletion as explained in details in later Section 4.4.3.2. (b) KG 

explicit gives performance improvement in all sets. Furthermore, there is significant boost 

in performance of the adversarial α2 and α3 sets.10 (c) Similarly, KG implicit shows signifi-

cant improvement in all test sets. The large improvements on the adversarial sets α2 and α3 

sets, suggest that the model can now reason better. Although, implicit knowledge provides 

most performance gain, all modifications are needed to obtain the best performance for all 

sets (especially on the α3 set). We show in Section 4.4.3.1, Table 4.5, that implicit knowledge 

addition to a non-sentential table representation i.e. Struc [26, 84] leads to performance 

improvement as well.

4.4.3.1 TabFact representation experiment

Table 4.5 is implicit knowledge addition effect on non-para Struc representation i.e. 

a key value linearize representation as “key k : value v”, rows separated by semicolon 

“;” [26, 84]. Here too the implicit knowledge addition leads to improvement in 

performance on all the sets.

4.4.3.2 Artifacts and model predictions

In Table 4.6 we show percentage of example which were corrected after modification 

and vice versa. Surprisingly, there is a small percentage of examples which are predicted 

correctly earlier with original premise (Para) but predicted wrongly after all the modifi-

cations (Mod), although such examples are much lesser than opposite case. We suspect 

that earlier model was also relying on spurious pattern (artifacts) for correct prediction on 

these examples earlier, which are now corrupted after the proposed modifications. Hence, 

the new model struggle to predict correctly on such examples.

10The KG explicit step is performed only for relevant keys (after DRR).
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4.4.3.3 Hyperparameters k versus test-sets accuracy

We also trained a model both train and tested on the DRR table premise for increasing

values of the hyper parameter k, as shown in Table 4.7. We also test the model trained on

the entire para on pruned para with increasing value of hyperparameters k ∈ {2, 3, 4, 5, 6}

for the test sets α1, α2, and α3. In all cases, except α3, the performance with larger k is better.

The increase in performance, even with k > 4, shows that the model is using more then

required keys for prediction. Thus, the model is utlising the spurious pattern in irrelevant

rows for the prediction.

In Appendix A, we also shows qualitative examples, where modification helps model

predict correctly. We also provide some examples via distracting row removal modifica-

tion, where model fails after modification.

4.5 Conclusion and Future Work
We introduced simple and effective modifications that rely on introducing additional

knowledge to improve tabular NLI. These modifications governs what information is pro-

vided to a tabular NLI and how the given information is presented to the model. We

presented a case study with the recently published InfoTabS dataset and showed that

our proposed changes lead to significant improvements. Furthermore, we also carefully

studied the effect of these modifications on the multiple test-sets, and why a certain mod-

ification seems to help a particular adversarial set.

We believe that our study and proposed solutions will be valuable to researchers work-

ing on question answering and generation problems involving both tabular and textual

inputs, such as tabular/hybrid question answering and table-to-text generation, especially

with difficult or adversarial evaluation. Looking ahead, our work can be extended to in-

clude explicit knowledge for hypothesis tokens as well. To increase robustness, we can also

integrate structural constraints via data augmentation through NLI training. Moreover,

we expect that structural information such as position encoding could also help better

represent tables.
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New York Stock Exchange

Type Stock exchange
Location New York City, New York, U.S.
Founded May 17, 1792; 226 years ago
Currency United States dollar
No. of listings 2,400
Volume US$20.161 trillion (2011)

H1: NYSE has fewer than 3,000 stocks listed.

H2: Over 2,500 stocks are listed in the NYSE.

H3: S&P 500 stock trading volume is over $10 trillion.

Figure 4.1: A tabular premise example. The hypotheses H1 is entailed by it, H2 is a contradiction
and H3 is neutral i.e. neither entailed nor contradictory.

Table 4.1: Dev accuracy on increasing hyperparameter k.

Train Dev k = 2 k = 3 k = 4 k = 5 k = 6

BTR DRR 71.72 74.83 77.50 78.50 79.00

Table 4.2: Accuracy with the proposed modifications on the Dev and test sets. Here, + represents
the change with respect to the previous row. Reported numbers are the average over three random
seed runs with standard deviation of 0.33 (+KG explicit), 0.46 (+DRR), 0.61 (+KG implicit), 0.86
(BTR), over all sets. All improvements are statistically significant with p < 0.05, except α1 for BTR
representation w.r.t to Para (Original). Here the Human and Para results are taken from Chapter 3.

Premise Dev α1 α2 α3

Human 79.78 84.04 83.88 79.33
Para 75.55 74.88 65.55 64.94

BTR 76.42 75.29 66.50 64.26
+KG implicit 79.57 78.27 71.87 66.77
+DRR 78.77 78.13 70.90 68.98
+KG explicit 79.44 78.42 71.97 70.03
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Table 4.3: Accuracy of model trained with original table but tested with DRR table with increasing
hyper parameter k on all test sets.

k α1 α2 α3

2 71.44 67.33 64.83
3 75.05 69.33 67.33
4 77.72 69.83 68.22
5 77.77 70.28 69.28
6 77.77 70.77 69.22

Table 4.4: Ablation results with individual modifications.

Premise Dev α1 α2 α3

Para 75.55 74.88 65.55 64.94

DRR 76.39 75.78 67.22 64.88
KG explicit 77.16 75.38 67.88 65.50
KG implicit 79.06 78.44 71.66 67.55

Table 4.5: Accuracy on InfoTabS data for Struc representation of tables. Here, + represents the
change with respect to the previous row.

Premise Dev α1 α2 α3

Struc 77.61 75.06 69.02 64.61
+ KG implicit 79.55 78.66 72.33 70.44

Table 4.6: Correct versus Incorrect predictions for Para model [84] and the model after the
modifcations (Mod).

Para Mod Dev α1 α2 α3

✓ × 6.77 7.83 9.27 10.01
× ✓ 10.94 12.55 14.33 16.05

Table 4.7: Dev accuracy with increasing hyper parameter k trained with both BPR and +DRR table.

Train Dev k=2 k=3 k=4 k=5 k=6

+DRR +DRR 77.61 77.94 78.16 78.38 79.00
BPR +DRR 71.72 74.83 77.50 78.50 79.00



CHAPTER 5

KNOWLEDGE INTEGRATION

TRANS-KBLSTM

Adapted from Y. Varun, A. Sharma, V. Gupta, Trans-KBLSTM: An external knowledge

enhanced transformer BiLSTM model for tabular reasoning, in Proceedings of Deep Learning

Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration

for Deep Learning Architectures, Dublin, Ireland and Online, May 27, 2022, Association of

Computational Linguistics, pp. 62-78.

Chapter 4 highlight the significance of adding world knowledge for the tabular infer-

ence task (c.f. Table 5.1). The approach develops a knowledge addition strategy, namely

KG Explicit, which expands the keys of a tabular premise with its definitions obtained from

Wordnet and Wikipedia articles. These definitions are appended as a suffix to the original

input as additional context. With this added additional knowledge, the model outperforms

the original baseline. Despite improved effectiveness, this way of knowledge addition has

the following drawbacks: (a) Knowledge Extraction. KG Explicit disambiguates multiple

key definitions using the table context, ignoring the hypothesis content entirely. Addition-

ally, the extended definition contains hypothesis-unrelated and unnecessary additional

functional terms. All of these factors contribute to erroneous key-sense disambiguation

and additional noise. (b) Knowledge Addition. KG Explicit adds knowledge by appending

a suffix definition to existing inputs instead of using more effective semantic represen-

tations such as Knowledge Embedding (Graph Embedding or Learned representations).

(c) Knowledge Integration. Finally, utilizing tokenized input BERT [51] to fuse word-pair

relations yields considerably weaker semantic linkages between premise, hypothesis, and

the external knowledge.

In this chapter, we propose a solution to above issues. We drew inspiration from [23]

and utilize relational connections between premise and hypothesis to extract important
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knowledge relations from ConceptNet [243] and Wordnet [170]. This enhancement re-

duces noise in knowledge addition, resulting in improved Knowledge Extraction. We

embed relational terms in sentences using sentence transformers [217] to encode semantic

representations of the relation, comparable to [68], culminating in successful Knowledge

Addition. Finally, for effective Knowledge Integration, we combine these relational em-

beddings into a word-level language model, using BiLSTM [96], and backpropagate using

our proposed BiLSTM and transformer architecture together to enhance model inferencing

capabilities.

Our proposed model, Trans-KBLSTM, outperforms the earlier baseline, i.e., KG Explicit

in full as well as limited supervision setting, substantially for some specific categories.

Furthermore, knowledge addition via Trans-KBLSTM improve model lexical, multi-row

and Numerical reasoning. We also performed a detailed ablation study to understand the

importance of each component. This work is published at DeeLIO 2022 workshop at ACL

2022 as [262]. 1

5.1 Contributions
The main contributions we make here are:

1. We address the challenges inherent in existing techniques, e.g., KG Explicit, for ex-

plicit knowledge addition in tabular reasoning.

2. We investigate a more efficient knowledge extraction method that involves using

knowledge embeddings rather than directly appending them to the input.

3. We propose a novel architecture, namely Trans-KBLSTM, for integrating word-level

knowledge effectively with BiLSTM’s encoders with state-of-the-art transformers

such as BERT.

4. Through extensive experiments, analysis and ablation studies, we demonstrate that

Trans-KBLSTM improves reasoning for InfoTabS dataset.

5.2 Background: Knowledge Integration
Traditional approaches to integrating external knowledge into deep learning models

do not use contextual embeddings from pre-trained language models. The Knowledge-

1The dataset, and associated scripts, are available at https://trans-kblstm.github.io/.

https://trans-kblstm.github.io/
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based Inference Model (KIM) [23] incorporates lexical relations (such as antonyms and

synonyms) into the premise and hypothesis representations using attention and compo-

sition units. [150] provides a method to mine and exploit commonsense knowledge by

defining inference rules between elements under different kinds of commonsense rela-

tions, with an inference cost for each rule. KG-Augmented Entailment System (KES)

[118] augments the NLI model with external knowledge encoded using graph convolu-

tional networks. ConseqNet [274] concatenates the output of the text-based model and

the graph-based model and then feeds it to a classifier. [149] uses LSTMs and a novel

knowledge-aware graph network module named KagNet to achieve state-of-the-art per-

formance on CommonSenseQA. BiCAM [69] models incorporate knowledge from Con-

ceptNet and AristoTuple KGs [46] by factorized bilinear pooling to improve performance

on NLI Datasets.

Incorporating external knowledge into language models has been extensively explored

in recent times. Approaches similar to the Tok-KTrans baseline described in §5.4.1 where

external knowledge is added at input level were explored in [28, 174, 285]. At the repre-

sentational level, the model understands these external knowledge additions and interacts

with these representations using multi-head attention modules [21]. Other approaches

include, pretraining on external knowledge corpus to inject knowledge [199, 260, 273],

better knowledge representations [12], modifications to multi-head attention in pre-trained

language models [89, 140], designing relation-aware tasks [283] and integration of knowl-

edge through multi-head attention [68].

Recently, [143] finds that when explicit knowledge is added in the form of word-pair

information, models such as [23] improve performance. However, such models necessitate

the use of classic seq2seq architectures such as BiLSTM to integrate word-level knowledge.

The use of external knowledge into Tabular data was first explored by us in Chapter 4

through KG-Explicit model described. We aim to improve on this benchmark through

this extensive study. In our proposed approach, external knowledge is separately added

to the premise and hypothesis using a multi-head attention dot product. To encode the

contextual relationships between premise and hypothesis, we use a pre-trained language

model, RoBERTa [158]. We combine the LM embeddings [68] and BiLSTM embeddings

using a skip connection which preserves the premise-hypothesis relational context and
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integrates knowledge effectively.

5.3 Proposed Trans-KBLSTM Model
We highlight the main model components and their implementation details in this sec-

tion. We begin with a description of the knowledge relations retrieval technique, followed

by a discussion of the model architecture’s core components.

5.3.1 External Knowledge Relations Retrieval

It is challenging to retrieve contextually relevant knowledge relations from the knowl-

edge graphs. The challenge is to retrieve task-relevant knowledge relations from massive

volumes of noisy Knowledge Graph data. Our method is inspired by [23], which considers

a connection to be significant if the knowledge graph contains the term pair relations.

5.3.1.1 Relational connections

We define relational connections between two sentences through external relational

knowledge between each pair of words in the sentences. The token level relation connec-

tions are based on word triples derived from the knowledge graphs.

5.3.1.2 Relational connections retrieval

Stop words and punctuation are first removed from the premise and hypothesis. Then,

we analyze the knowledge relational connections between the premise and hypothesis

token pairs and compute the relationship attention matrix, Ar
ij, as follows:

Ar
ij =

{
1 ith and jth words are related
0 ith and jth words are not related

Each knowledge relational triple, consisting of two token terms (one from each premise

and hypothesis) and their respective relationship is transformed into a complete grammat-

ical sentence. For instance, the triple {Day, Antonym, Night} is transformed into “Day is

the opposite of Night”. For a complete list of knowledge templates refer to Appendix B.

We utilize sentence transformers, as presented in [217], to convert the relationship phrase

e.g. “is opposite of” in the preceding example into high-level semantic representations. The

contextual representations denote the relational pair’s across relational pairs.



61

We encode the premise and hypothesis using RoBERTa[158] to generate contextual

word embeddings. Consider P = {pi}m
i=1 as table premise of length m and H = {hj}n

j=1 as

hypothesis of length n. We input these premise-hypothesis pairs to RoBERTa:

S = [<s> P </s> H </s> ] ; Tr = RoBERTa(S)

Here, Tr denotes the context-aware representations of the premise and hypothesis.

5.3.2.2 Encoding premise and hypothesis

The encoder approach is inspired from [23]. We encode the Premise, P = {pi}m
i=1

and Hypothesis, H = {hj}n
j=1 using bidirectional LSTMs (BiLSTMs). We embed pi and hi

into de dimensional vectors
[
E(p1), ...E(pm)

]
and

[
E(h1), ...E(hn)

]
using embedding matrix

E ∈ Rde×|V|, where |V| is the Vocabulary size and E can be initialized with pretrained 

embeddings. We feed the premise-hypothesis pairs into BiLSTM encoders [96] to generate 

context-aware hidden states ps and hs.

ps = BiLSTM(E(p), i) ; hs = BiLSTM(E(h), i)

ps ∈ Rm×lk and hs ∈ Rn×lk

Here, lk is the LSTM hidden state size. Following that we apply embedding dropout [70]

2Experiment with non-zero random initialization ref §5.4.3.

5.3.1.3 Relational connection embedding

The contextual knowledge connections between premise and hypothesis token pairs 

are used to generate a relational vector, Rijk. Each marginal vector Rij is the k dimension 

BERT representation for the “Relation Connection Sentence” in the previously described 

sentential form constructed using the relationship between the ith premise word and the 

jth hypothesis word. For words whose relations are absent from knowlege source, we 

initialize the Rij vector with ‘zero’ values.2

5.3.2 Model Architecture Details

Next, we described several components of our proposed model. Figure 5.1 describes the 

high level architecture of the Trans-KBLSTM model.

5.3.2.1 Transformer
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to enhance variation and prevent overfitting [296].

5.3.2.3 Premise and hypothesis attention module

To assess the contribution of external knowledge to the premise (and hypothesis), we

utilize the Multi-Head dot-product attention [263] across knowledge representations and

premise-hypothesis encoding. We calculate premise hypothesis relation values by nor-

malizing relational connection embedding (Rijk) with respect to column-axis (1), to obtain

Rprem
jk ∈ Rn×k which is the average premise relation for every hypothesis word.

Rprem
jk = ∑m

i=1

Rijk

m

To apply dot product attention, we then reduce the dimension of the relation matrix to

BiLSTM hidden state dimension, i.e., lk.

Rr
jk = Fr

P(Rprem
jk ) ∈ Rn×lk

where, Fr
P is a single layer neural network.

To highlight the importance of premise and its relations to hypothesis we utilise the

premise attention head. The context-aware hypothesis hidden state hs is used as queries,

premise hidden state is used as keys and reduced premise hypothesis relation values are

used as values. The attention function can be defined as follows:

Attention(hs, ps, Rr
jk) = softmax(

hs psT
√

l
)Rr

jk

where, the multi-head attention is defined:

hatt
p = MH(hs, ps, Rr

jk)

= Concat(head1, . . . , headh)Wo

Here, headi = Attention(hsWq
i , psWk

i , Rr
jkWv

i ) and Wq
i , Wk

i , and Wv
i are projection matrices

and i is the number of attention heads. The output hatt
p ∈ Rn×lk is a context matrix that is

attention-weighted according to the strength of the premise and its relationships to each

of the hypothesis words. We also extract Patt, the premise multi-head attention attention

weights. In hypothesis attention module, we use hypothesis attention head to highlight

the importance of hypothesis and its relations to premise. Similar to the premise attention

module, we calculate3 patt
h ∈ Rm×lk , attention-weighted context matrix measuring the

3More details can be found in Appendix B.
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importance of premise and relations to each of the hypothesis. We also extract Hatt, the

hypothesis multi-head attention attention weights.

5.3.2.4 Context aware external knowledge

ExBERT [68] uses a mixture model to weigh the balance of external relations and premise-

hypothesis during inference. We construct attention-weighted external knowledge rela-

tions using Multi-head attention weights obtained in the attention modules.

PCE = ∑h
k=1Patt

ij Rijk ; HCE = ∑h
k=1Hatt

ij Rijk

5.3.2.5 Composition layer

ps encodes the individual word representations of the premise while patt
h is the con-

text representation of the premise aligned to the hypothesis. We can obtain word-level

inference information for each word in the premise by composing them together with

attention weights and context-aware external knowledge. We can do the same calculation

for hypothesis, hs and hatt
p :

pm = GP(
[
ps; patt

h ; ps − patt
h ; ps ∗ patt

h ;
n

∑
j=1

PCE
ij

]
)

hm = GH(
[
hs; hatt

p ; hs − hatt
p ; hs ∗ hatt

p ;
n

∑
j=1

HCE
ij

]
)

Here, GP and GH are 2-layer neural networks with Dropout and ReLU activation [3] that

compose the knowledge relations and premise-hypothesis contextual vectors into a unified

knowledge aware context vector.

5.3.2.6 Pooling layer

The pooling layer creates fixed-length representations from the knowledge-aware premise

and hypothesis context vectors.

pmean = MeanPool(pm) ; pmax = MaxPool(pm)

hmean = MeanPool(hm) ; hmax = MaxPool(hm)

5.3.2.7 Embedding mix-skip connection

To effectively integrate transformer embeddings with representations from premise 

and hypothesis, we introduce an Embedding mix-skip connection, where the embeddings
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are concatenated and passed through a fully connected layer with a skip connection to

transformer embeddings. Skip connections, introduced by [91], provides a shortcut to

gradient flow and preserve the context between layers.

f =
[
pmean, pmax, hmean, hmax

]
f ′ = Tr + Fc([Tr, f ])

Here, Fc is a two-layer neural network with dropout and ReLU activation. Finally, f ′ is

passed through a classification layer to obtain the inference class.

5.4 Experiment and Analysis
Our experiments study the following questions.

RQ1: Is our proposed model competent in using external knowledge sources effec-

tively to enhance performance across InfoTabS evaluations sets?

RQ2: How effective is our approach in settings with little supervision? How much

supervision is necessary to outperform benchmark models?

RQ3: (a) Which reasoning types is our proposed model most effective at boosting? (b)

Is our approach equally effective across all domains, that is, across all table categories?

RQ4: How does the model component choices impact performance? (a) To what extent

are skip connections, (b) knowledge embeddings, (c) additional MNLI [280] pre-finetuning,

and (d) a bigger pre-trained model beneficial?

5.4.1 Experimental Setup

Here, we discuss the datasets, external knowledge sources, and the models used in the

experiments.

5.4.1.1 Datasets

We use InfoTabS, a tabular Language inference dataset introduced by [84] for all our

experiments. The dataset is diverse in categories and keys and requires background knowl-

edge and semantic understanding of the text. Examples in InfoTabS are labeled with three

types of inference: entailment, neutrality, and contradiction, based on their relation with

premise tables. Along with the standard development set and test set (dubbed α1), the

dataset includes two adversarial test sets: a contrast set dubbed α2 that is lexically similar
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to α1 but contains fewer hypotheses, and a zero-shot set dubbed α3 that contains long

tables from various domains with little key overlap with the training set.

5.4.1.2 Table representation

To represent tables, we utilize [182] Better Paragraph Representation (BPR) technique in

conjunction with Distracting Row Removal (DRR). The BPR technique turns its rows into

sentences using a universal template, enabling it to be used as the input for a BERT-style

model. We utilize the DRR approach to reduce the premise table by identifying the most

relevant premise sentence. For finding the most relevant rows, we use cosine similarity

over fastText embeddings [15] and word alignment with the specified hypothesis. We

select the top four aligned table rows from each premise table with hypotheses.

5.4.1.3 Knowledge sources

We utilize ConceptNet, as introduced by [243] to extract external commonsense knowl-

edge to create relational occurrences. We notice that 85% of premise-hypothesis pairings

contain at least one relationship in the ConceptNet database. To supplement the coverage,

we also use Wordnet [170], to extract additional lexical word relations, namely Synonyms,

Antonyms, Hypernyms, Hyponyms and Co-Hyponyms. After combining the two knowledge

databases and removing duplicates, the number of non-zero relational connection pairings

increases to 90%. We create an English directional single word relations dataset by merging

ConceptNet and Wordnet. The combined KG source contains 11.2 million relation triples.

For example in the Table 5.1, the relational occurrence { “coast”← “California”} extracted

from Conceptnet, provide the necessary world knowledge required for correct inference.

5.4.1.4 Word embeddings

We utilize pre-learned word embeddings to initialize the BiLSTM encoders. The premise

and hypothesis words are embedded in 300-dimensional vectors using Glove embeddings

introduced by [198]. We also investigate fastText embeddings for representation, but it

has only 77.4 % coverage of all tokens. Glove is a collection of 400,000-word embeddings

learned using the Wikipedia, Common crawl, and Twitter datasets. We realize that the
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GloVe vocabulary covers 85.6% of the terms in InfoTabS dataset.4

5.4.1.5 Models

To evaluate we compare our model with InfoTabS [84] and Knowledge-InfoTabS [182]

baselines, specifically we employ the following methods:

• RoBERTa. The original RoBERTa baseline of InfoTabS. We append and encode

premise and hypothesis pairs with BPR with DRR representation and generate an

inference label with the RoBERTa classification head.

• KG Explicit. Knowledge-InfoTabS introduced this baseline. The baseline uses the

same RoBERTa classifier as the InfoTabS, except that the premise end is augmented

with extracted premise row key definitions from Wordnet and Wikipedia sources be-

fore encoding and classifying using RoBERTa. Additionally, prior to appending, the

method employs key sense disambiguation to assure that only relevant hypothesis

context-related definitions are added. For example, for a table with category “Person”

and key “Spouse”, the definition of “Spouse” from Wikipedia, i.e., “Spouse is defined as

a spouse is a significant other in a marriage, civil union, or common-law marriage.” is

appended as a suffix.

• Tok-KTrans. We utilize Wordnet to expand premise hypothesis pairs with word rela-

tions in Tokens added transformers before encoding and classifying using RoBERTa.

We extend the tokenizer by including relational tokens and appending the relation-

ships with the following format - {<KNW> [premise word1 : hypothesis word1 ;

<relation1> ] [premise word2 : hypothesis word2 ; <relation2>] . . . }. For example, The

table Jallikattu contains a key Mixed Gender with a value NO. The hypothesis, Jal-

likattu is a single sex sport contradicts the premise table. We append the relation

{<KNW> [ gender : sex ; <SYN> ]} as suffix to input prior to the RoBERTa clas-

sification.

• Trans-KBLSTM. This is our proposed model as described in the §5.3. For details on

model training and hyper-parameters, refer to Appendix B.

4Due to limited supervision, we found that freezing word embedding during the BiLSTM training is
beneficial. For the remaining unseen tokens, we initialized with zero vectors.
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5.4.2 Results and Analysis

This section summarizes our findings concerning the research questions.

5.4.2.1 Full supervision setting

To assess the effectiveness of our method Trans-KBLSTM (i.e. RQ1), we train baseline

and our model Trans-KBLSTM with 100% of training data. Table 5.2 shows the perfor-

mance (accuracy) for all models. We observe that Trans-KBLSTM outperform5 all other

baselines. On development, α1, and α3 Trans-KBLSTM outperform 0.75 - 0.95 % with

100% training data.

5.4.2.2 Limited supervision setting

To ensure that our model works effectively in low-resource scenarios (i.e., RQ2), we

analyze models trained under limited supervision. We randomly sampled {1, 2, 3, 5, 10,

15, 20, 25, 30, 50, and 100} data in an incremental method 6. We experimented three times

using random seeds for sampling/training to account for sample variability.

Figure 5.2 shows the accuracy for all models. We observe a huge performance im-

provement with Tran-KBLSTM over other baseline models for low data regimes. All

improvements are statistically significant with Student’s t-test p < 0.05 except dev results

with 3% and 5%. For precise numbers and standard deviation plots, see Appendix B.

Additionally, as the training supervision increases, the performance margin across mod-

els narrows. This improvement can be attributed to the fact that the model’s reasoning

ability increases when more training data is added, resulting in more accurate predictions

without explicitly necessitating external knowledge addition. As a result, adding external

knowledge may not be as beneficial if there is adequate supervision.

5.4.2.3 Reasoning analysis

To investigate the reasoning behind a model’s prediction (i.e., RQ3(a)), InfoTabS adapted

the set of reasoning categories from GLUE [270] for tabular premises. Thus, we also

analyze performance across several reasoning types on the development set of InfoTabS.

We utilized the reasoning annotated instances from InfoTabS for our analysis. Figure 5.3

5reaches maximum in 6-7 epochs while [182] takes 14-15 epochs

6Higher % include all instances from lower %, i.e. a 20% includes all instances from a 10% samples.



68

(1%) and Figure 5.4 (3%) show the performance across various reasoning types on the

development set for 1% and 3% of InfoTabS development set. Trans-KBLSTM model

shows improvements in several reasoning types including “Lexical”, “Multi-Row”, and

“KCS”.

• Lexical Reasoning involves inferencing through words independent of context, where

the word falls. Since we add relational connections between words which include

synonyms, antonyms, etc. lexical reasoning ability of the model enhances. For

example, in the table “Chibuku Shake”, the key “Ingredients” contains “Sorghum” and

“Maize” while the hypothesis requires us to infer about Corn as an ingredient in the

Chibuku shake. The relation {“corn”
Synonym←−−−− “Maize”} helps the model in making

the correct prediction. For details refer Appendix B.
• Multi-Row Reasoning involves making an inference using multiple rows of the table.

When the reasoning involves multiple rows, the model needs to extract the relevant

rows and rightly focus on selected related connected phrases. The relational con-

nections that we propose between premise and hypothesis tokens establish these

extractions and connections and thus enhancing the multi-row reasoning ability of

the Trans-KBLSTM model. For example in a “Person” table relations such as { “born”
RelatedTo←−−−→ “young” ; “born” RelatedTo←−−−→ “child” ; “child” RelatedTo←−−−→ “age” ; “year active”
Co−Hyponym←−−−−−−→ “child” } help in connected both the born, child and year active keys

with the concern hypothesis. For details refer Appendix B.
• Knowledge and Common Sense Reasoning. This reasoning is related to the World Knowl-

edge and Common Sense category from GLUE-Benchmark [270], which is quoted

as “. . . the entailment rests not only on correct disambiguation of the sentences, but

also, application of extra knowledge, whether factual knowledge about world affairs

or more commonsense knowledge about word meanings or social or physical dy-

namics.” Knowledge databases like ConceptNet contain many knowledge relations

capable of enhancing these reasoning type. For example, in a “Country” table rela-

tions such as { “kingdom” IsA←→ “monarchy” ; “democracy” RelatedTo←−−−→ “Government”

} add additional information necessary for inference. For details refer Appendix B.

Improvement across Inference Labels: In our analysis, we observe a performance

improvement across the Entailment and Neutral labels, but only a negligible increase, for

example, in instances labeled with the Contradiction label. Contradictory label prediction
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requires noise-free, contextually relevant knowledge to ascertain the negation. External

knowledge addition with minimal noise can lead to the predicted Neutral or Entailment

label. Additional ways for relational connection trimming may be explored in future.

5.4.3 Ablation Study

We perform ablation studies (i.e., RQ4) to understand the importance of individual

model components further. The ablation study was conducted to ascertain the significance

of (a) Trans-KBLSTM Skip Connection, (b) Knowledge Relations, (c) Implicit KG addition

via. MNLI pre-training (Embeddings), and (d) Transformer Model Param Size. (e) Inde-

pendent Component training.

5.4.3.1 Effect of skip connections

We study the significance of embedding skip connection and the knowledge relations

(i.e., RQ4(a,b)). The knowledge relations are initialized with random vectors to examine

model performance variations.

Table 5.3 shows the Trans-KBLSTM performance with several ablations. We observe

that adding knowledge and the introduction of skip connection improve the model perfor-

mance. The addition of knowledge to the model improves the performance on Dev, α1, and

α2 sets. The inclusion of knowledge improves performance the most for Development, α2,

and α3 sets, whereas the addition of skip connection improves performance substantially

in α1 set. The performance improvement in α3 set demonstrates that using external

information benefits zero-shot settings (i.e., cross-domain transfer learning). The improved

performance by the addition of skip connection demonstrates that effective knowledge

integration significantly impacts model performance.

5.4.3.2 Implicit knowledge addition

We examine the effect of implicit knowledge addition (i.e., RQ4(b)) in Trans-KGLSTM

model. Thus, similar to the KG Implicit baseline of Knowledge-InfoTabS [182], we sup-

plement implicit knowledge using the MNLI via data augmentation. To ensure a fair

comparison, we compare the two Trans-KBLSTM RoBERTa-based classifiers, one with and

the other without MNLI data pre-training. The performance with MNLI pre-training is

reported in Figure 5.5.
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We observe an improvement in performance for all percentages of train data after

pre-training using MNLI data. Pre-training enables the model to acquire domain-specific

information, hence enhancing its performance. There is a more significant gain in per-

formance for non-pre-trained than for MNLI pre-trained models, suggesting that external

information addition is more beneficial for models without any implicit knowledge. In

comparison, our approach uses relational connections to augment the model’s knowledge

in the phase, final training avoiding the computational, time, and economic cost of large

MNLI pre-training.

5.4.3.3 Effect of transformer size

We substitute RoBERTaLARGE with RoBERTaBASE to study the effect of transformer size

on performance (i.e. RQ4 (d)) of InfoTabS test sets. We pre-train both the transformers

model using the MultiNLI dataset for all percentages. The performance is depicted in

Figure 5.6. We see an increase in performance as the model’s size increases, especially for

external knowledge addition, i.e., Trans-KBLSTM model.

5.4.3.4 Independent training

We examine the effect of training transformer and KBLSTM components independently.

For independent training, we first train RoBERTaLARGE transformer model on InfoTabS.

Then we utilize these weights to initialize the transformer component of Trans-KBLSTM.

Finally, we trained the KBLSTM component of Trans-KBLSTM on InfoTabS while keeping

these pre-trained transformer weights frozen (constant). Table 5.4 shows the results of

training Trans-KBLSTM with different regimes. We observe that training the components

together shows a more significant improvement in performance than training the KBLSTM

component independently. Joint training of transformer and KBLSTM generates represen-

tations in the same embedding space, enhancing external knowledge integration.

5.5 Conclusion and Future Work
In this chapter, we introduce Trans-KBLSTM, a novel architecture to integrate external

knowledge into tabular NLI models. Trans-KBLSTM is shown to improve reasoning on

the InfoTabS dataset. The performance advantage is particularly pronounced in low-data

regimes. The reasoning study demonstrates that the model enhances lexical, numerical,
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and multiple-row reasoning. Ablation experiments demonstrate the critical nature of each

component in the model’s design. We believe that our findings will be valuable to re-

searchers working on the integration of external knowledge into deep learning architec-

tures. Performance of the proposed architecture on more datasets can be explored in future

studies. Looking forward, the application of this architecture to other NLP tasks that can

benefit from external knowledge enhanced relational connections between sentence pairs,

such as question answering and dialogue understanding.
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Figure 5.1: High level flowchart of Trans-KBLSTM.



73

Figure 5.2: Performance in terms of accuracy in limited supervision setting. w/o KG represent
RoBERTa InfoTabS [84] baseline, KG Explicit represent Knowledge-InfoTabS [182] baseline,
Tok-KTrans is the token appended transformers and Trans-KBLSTM represent our proposed
model. Reported results are average over 3 random seed runs with average standard deviation
of 0.233 (w/o KG), 0.49 (KG Explicit), 0.50 (Tok-KTrans) and 0.30 (Trans-KBLSTM). All the im-
provements are statistically significant with Student’s t-test p < 0.05 of one-tailed Student t-test.
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Figure 5.3: Number of correct model predictions across various reasoning types. w/o represents
without knowledge (KG) i.e. original RoBERTa models and w represents Trans-KBLSTM model
with explicitly added relational connection knowledge (KG).

Figure 5.4: Number of correct model predictions across various reasoning types. w/o represents
without knowledge (KG) i.e. original RoBERTa models and w represents Trans-KBLSTM model
with explicitly added relational connection knowledge (KG).

Figure 5.5: Performance improvement with MNLI pre-training across various models.
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Figure 5.6: Improvement in model performance across varying models sizes.
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Table 5.1: An InfoTabS example demonstrating the need of knowledge augmentation. Predict-
ing the Gold label requires broad understanding of California is located on the Coast. In the table, for
each row the first column represents the keys (unique identifiers) and the second column represents
their corresponding values (attributes).

James Hetfield

Birth Name James Alan Hetfield
Born Aug. 3, 1963(age 58), California, U.S.
Genres Heavy metal, thrash metal, hard rock
Occupation(s) Musician, Singer
Instruments Vocals, Guitar
Years active 1978-present
Labels Warner Bros, Elektra, MegaForce

Hypothesis James Hetfield was born on the west coast of the USA.

Focused Relation coast AtLocation←−−−−−− california

Human Entailment
RoBERTa Neutral
Trans-KBLSTM Entailment

Table 5.2: Performance in terms of accuracy with full supervision. w/o Knoweldge represent
RoBERTa InfoTabS [84] baseline, KG Explicit represent Knowledge-InfoTabS [182] baseline,
Tok-KTrans is the token appended transformers and Trans-KBLSTM represent our proposed
model. Reported number are average over three random seeds with standard deviation of 0.27
(w/o KG), 0.69 (Tok-KTrans), 0.23 (KG Explicit) and 0.36 (Trans-KBLSTM). All improvements are
statistically significant with Student’s t-test p < 0.05 except α2 with KG Explicit.

Model Dev α1 α2 α3

w/o Knowledge 77.30 76.44 70.49 69.05
Tok-KTrans 78.17 76.19 70.75 69.77
KG Explicit 78.97 77.84 71.13 69.58
Trans-KBLSTM 79.92 79.62 72.10 70.21

Table 5.3: Ablation study performance on stratified 1% split of dataset. We systematically
eliminate model components in order to evaluate the performance improvement.

Ablations Dev α1 α2 α3

Trans-KBLSTM 67.55 65.16 64.00 63.38
- Skip Connect 65.72 62.83 60.00 61.55

- KB 60.44 61.88 56.94 55.55
- (KB + Skip Connect) 60.11 61.50 55.94 57.38
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Table 5.4: Joint/Independent training performance on InfoTabS dataset. First row shows results
of training only RoBERTaLARGE model without knowledge. Second row shows results of training
KBLSTM independently after freezing RoBERTaLARGE parameters. Third row shows the results of
our proposed approach i.e. Joint-training of RoBERTaLARGE and KBLSTM.

Ablations Dev α1 α2 α3

RoBERTaLARGE 77.30 76.44 70.49 69.05
+ KBLSTM (Independent) 79.22 78.38 71.00 69.22
+ KBLSTM (Joint Train) 79.92 79.62 72.10 70.21



CHAPTER 6

SYSTEMATIC TABULAR PROBES

Adapted from V. Gupta, R. Bhat, A. Ghosal, M. Shrivastava, M. Singh, and V. Srikumar.

Is my model using the right evidence? Systematic probes for examining evidence-based tabular

reasoning. Trans. Assoc. Comput. Linguist. (TACL), 10 (2022), pp. 659–679.

One strategy for tabular reasoning tasks relies on the successes of contextualized rep-

resentations [51, 158] for the sentential version of the problem. Tables are flattened into

artificial sentences using heuristics to be processed by these models, as described in Chap-

ter 3. Surprisingly, even this naı̈ve strategy leads to high predictive accuracy, as shown not

only in Chapter 3 but also by related lines of recent work [58, 291].

In this chapter, we ask: Do these seemingly accurate models for tabular inference effectively

use and reason about their semi-structured inputs? While ”reasoning” can take varied forms,

a model that claims to do so should at least ground its outputs on the evidence provided

in its inputs. Concretely, we argue that such a model should (a) be self-consistent in its

predictions across controlled variants of the input, (b) use the evidence presented to it, and

the right parts thereof, and, (c) avoid being biased against the given evidence by knowledge

encoded in the pre-trained embeddings.

6.1 Contributions
Corresponding to these three properties, we identify three dimensions to evaluate a

tabular NLI system: robustness to annotation artifacts, relevant evidence selection, and

robustness to counterfactual changes. We design systematic probes that exploit the semi-

structured nature of the premises. This allows us to semi-automatically construct the

probes and to unambiguously define the corresponding expected model response. These

probes either introduce controlled edits to the premise or the hypothesis, or to both, thereby

also creating counterfactual examples. Experiments reveal that despite seemingly high test

set accuracy, a model based on RoBERTa [158], a good representative of BERT derivative
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models, is far from being reliable. Not only does it ignore relevant evidence from its

inputs, it also relies excessively on annotation artifacts, in particular the sentence struc-

ture of the hypothesis, and pre-trained knowledge in the embeddings. Finally, we found

that attempts to inoculate the model [155] along these dimensions degrades its overall

performance.1

This work is published at TACL 2022, and presented at ACL 2022 as [83]. Additionally,

we also released a interactive annotation platform for generating effective tabular pertur-

bations, which got published in EMNLP 2021 Demo track as [104]. TabPert facilitates this

by generation of such counterfactual data for assessing model tabular reasoning issues.

TabPert allows the user to update a table, change the hypothesis, change the labels, and

highlight rows that are important for hypothesis classification. TabPert also details the

technique used to automatically produce the table, as well as the strategies employed to

generate the challenging hypothesis. These counterfactual tables and hypotheses, as well

as the metadata, is then used to explore the existing model’s shortcomings methodically

and quantitatively.

6.2 Background

Unlike unstructured data, where creating challenge datasets may be more difficult [79,

172, 221], we can analyze semi-structured data more effectively. Although connected with

the title, the rows in the table are still independent, linguistically and otherwise. Thus,

controlled experiments are easier to design and study. For example, the analysis done

for evidence selection via multiple table perturbation operations such as row deletion and

insertion is possible mainly due to the tabular nature of the data. Such granularity and

component-independence is generally absent for raw text at the token, sentence and even

paragraph level. As a result, designing suitable probes with sufficient coverage can be a

challenging task, and can require more manual effort.

Additionally, probes defined on one tabular dataset (InfoTabS in our case) can be easily

ported to other tabular datasets such as WikiTableQA [195], TabFact [26], HybridQA [27,

189, 297], OpenTableQA [24], ToTTo [194], Turing Tables [293], LogicTable [25]. Moreover,

such probes can be used to better understand the behavior of various tabular reasoning

1The dataset and the scripts used for our analysis are available at https://tabprobe.github.io.

https://tabprobe.github.io
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models [77, 94, 101, 177, 204, 291].

6.2.1 Interpretability for NLI Model

For classification tasks such as NLI, correct predictions do not always mean that the

underlying model is employing correct reasoning. More work is needed to make mod-

els interpretable, either through explanations or by pointing to the evidence that is used

for predictions [52, 63, 95, 105, 187, 192, 215, 223, 234, 279]. Many recent shared tasks

on reasoning over semi-structured tabular data (such as SemEval 2021 Task 9 [226] and

FEVEROUS [5]) have highlighted the importance of, and the challenges associated with,

evidence extraction for claim verification.

Finally, NLI models should be tested on multiple test sets in adversarial settings [78,

103, 155, 167, 179, 184, 218, 219, 220, 307] focusing on particular properties or aspects of

reasoning, such as perturbed premises for evidence selection, zero-shot transfer (α3), coun-

terfactual premises or alternate facts, and contrasting hypotheses via perturbation (α2).

Such behavioral probing by evaluating on multiple test-only benchmarks and controlled

probes is essential to better understand both the abilities and the weaknesses of pre-trained

language models.

6.3 Preliminaries: Tabular NLI
Tabular natural language inference is a task similar to standard NLI in that it examines

if a natural language hypothesis can be derived from the given premise. Unlike standard

NLI, where the evidence is presented in the form of sentences, the premises in tabular NLI

are semi-structured tables that may contain both text and data.

6.3.1 Dataset

Recently, datasets such as TabFact [26] and InfoTabS [84], and also shared tasks such

as SemEval 2021 Task 9 [226] and FEVEROUS [5], have sparked interest in tabular NLI

research. In this study, we use the InfoTabS dataset for our investigations.

InfoTabS consists of 23, 738 premise-hypothesis pairs, whose premises are based on

Wikipedia infoboxes. Unlike TabFact, which only contains ENTAIL and CONTRADICT

hypotheses, InfoTabS also includes NEUTRAL ones. Table 6.1 shows an example table

from the dataset with four hypotheses, which will be our running example.
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The dataset contains 2, 540 distinct infoboxes representing a variety of domains. All

hypotheses were written and labeled by MTurk workers. The tables contain a title and two

columns, as shown in the example. Since each row takes the form of a key-value pair, we

will refer to the elements in the left column as the keys, and the right column provides the

corresponding values.

In addition to the usual train and development sets, InfoTabS includes three test sets,

α1, α2 and α3. The α1 set represents a standard test set that is both topically and lexically

similar to the training data. In the α2 set, hypotheses are designed to be lexically adversar-

ial, and the α3 tables are drawn from topics not present in the training set. We will use all

three test sets for our analysis.

6.3.2 Models over Tabular Premises

Unlike standard NLI, which can use off-the-shelf pre-trained contextualized embed-

dings, the semi-structured nature of premises in tabular NLI necessitates a different mod-

eling approach.

Following [26], tabular premises are flattened into token sequences that fit the input

interface of such models. While different flattening strategies exist in the literature, we

adopt the Table as a Paragraph strategy of [84], where each row is converted to a sentence

of the form “The key of title is value”. This seemingly naı̈ve strategy, with RoBERTa-

large embeddings (RoBERTaL henceforth), achieved the highest accuracy in the original

work, shown in Table 6.2.2 The table also shows the hypothesis-only baseline [87, 202] and

human agreement on the labels.3

To study the stability of the models to variations in the training data, we performed

5-fold cross validation (5xCV). An average cross validation accuracy of 73.53% with a

standard deviation of 2.73% was observed on the training set which is close to the per-

formance on the α1 test set (74.88%). In addition, we also evaluated performance on the

2Other flattening strategies have similar performances [84].

3Preliminary experiments on the development set showed that RoBERTaL outperformed other pre-trained
embeddings. We found that BERTB, RoBERTaB, BERTL, ALBERTB and ALBERTL reached development set
accuracies of 63.0%, 67.23%, 69.34%, 70.44% and 70.88%, respectively. While we have not replicated our
experiments on these other models due to a prohibitively high computational cost, we expect the conclusions
to carry over to these other models as well.
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development and test sets. The penultimate row of Table 6.2 presents the performance for

the model trained on the entire training data, while the last row presents the performance

of the 5xCV models. The results demonstrate that model performance is reasonably stable

to variations in the training set.

6.4 Reasoning: An Illusion?
Given the surprisingly high accuracies in Table 6.2, especially on the α1 test dataset, can we

conclude that the RoBERTa-based model reasons effectively about the evidence in the tabular input

to make its inference? That is, does it arrive at its answer via a sound logical process that

takes into account all available evidence along with common sense knowledge? Merely

achieving high accuracy is not sufficient evidence of reasoning: the model may arrive at

the right answer for the wrong reasons leading to improper and inadequate generalization

over unseen data. This observation is in line with the recent work pointing out that the

high-capacity models we use may be relying on spurious correlations [202].

“Reasoning” is a multi-faceted phenomenon, and fully characterizing it is beyond the

scope of this work. However, we can probe for the absence of evidence-grounded reason-

ing via model responses to carefully constructed inputs and their variants. The guiding

premise for this work is:

Any “evidence-based reasoning” system should demonstrate expected, predictable be-
havior in response to controlled changes to its inputs.

In other words, “reasoning failures” can be identified by checking if a model devi-

ates from expected behavior in response to controlled changes to inputs. We note that

this strategy has been either explicitly or implicitly employed in several lines of recent

work [72, 221]. In this work, we instantiate the above strategy along three specific dimen-

sions, briefly introduced here using the running example in Table 6.1. Each dimension is

used to define several concrete probes that subsequent sections detail.

6.4.1 Avoiding Annotation Artifacts

A model should not rely on spurious lexical correlations. In general, it should not

be able to infer the label using only the hypothesis. Lexical differences in closely related

hypotheses should produce predictable changes in the inferred label. For example, in the

hypothesis H2 of Table 6.1 if the token “end” is replaced with “start”, the model prediction
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should change from CONTRADICT to ENTAIL.

6.4.2 Evidence Selection

A model should use the correct evidence in the premise for determining the hypothesis

label. For example, ascertaining that the hypothesis H1 is entailed requires the Genre and

Length rows of Table 6.1. When a relevant row is removed from a table, a model that

predicts the ENTAIL or the CONTRADICT label should predict the NEUTRAL label. When

an irrelevant row is removed, it should not change its prediction from ENTAIL to NEUTRAL

or vice versa.

6.4.3 Robustness to Counterfactual Changes

A model’s prediction should be grounded in the provided information even if it con-

tradicts the real world, i.e., to counterfactual information. For example, if the month

of the Released date changed to “December”, then the model should change the label

of H2 in Table 6.1 to ENTAIL from CONTRADICT. Since this information about release

date contradicts the real world, the model cannot rely on its pre-trained knowledge, say

from Wikipedia. For the model to predict the label correctly, it needs to reason with the

information in the table as the primary evidence. Although the importance of pre-trained

knowledge cannot be overlooked, it must not be at the expense of primary evidence.

Further, there are certain pieces of information in the premise (irrelevant to the hypoth-

esis) which do not impact the outcome, making the outcome invariant to these changes.

For example, deleting irrelevant rows from the premise should not change the model’s

predicted label. Contrary to this is the relevant information (“evidence”) in the premise.

Changing these pieces of information should vary the outcome in a predictable manner,

making the model covariant with these changes. For example, deleting relevant evidence

rows should change the model’s predicted label to NEUTRAL.

The three dimensions above are not limited to tabular inference. They can be extended

to other NLP tasks, such as reading comprehension as well as the standard sentential

NLI. However, directly checking for such properties there would require a lot of labeled

data—a big practical impediment. Fortunately, in the case of tabular inference, the (in-/co-

)variants associated with these dimensions allow controlled and semi-automatic edits to

the inputs leading to predictable variation of the expected output. This insight underlies
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the design of probes using which we examine the robustness of the reasoning employed

by a model performing tabular inference. As we will see in the following sections, highly

effective and precise probes can be designed without extensive annotation.

6.5 Probing Annotation Artifacts
Can a model make inference about a hypothesis without a premise? It is natural to answer

in the negative in general (Of course, certain hypotheses may admit strong priors, e.g.,

tautologies.). Preliminary experiments by [84] on InfoTabS, however, reveal that a model

trained just on hypotheses performs surprisingly well on the test data. This phenomenon,

an inductive bias entirely predicated on the hypotheses, is called hypothesis bias. Models

for other NLI tasks have been similarly shown to exhibit hypothesis bias, whereby the

models learn to rely on spurious correlations between patterns in the hypotheses and

corresponding labels [75, 87, 202]. For example, negations are observed to be highly

correlated with contradictions [187].

To better characterize a model’s reliance on such artifacts, we perform controlled edits

to hypotheses without altering associated premises. Unlike the α2 set, which includes

minor changes to function words, we aim to create more sophisticated changes by altering

content expressions or noun phrases in a hypothesis. Two possible scenarios arise where a

hypothesis alteration, without a change in the premise, either (a) leads to a change in the

label (i.e., the label covaries with the variation in the hypothesis), or (b) does not induce a

label change (i.e., the label is invariant to the variation in the hypothesis).

In InfoTabS, a set of reasoning categories are identified to characterize the relationship

between a tabular premise and a hypothesis. We use a subset of these, listed below, to

perform controlled changes in the hypotheses: (a.) Named Entities: entities such as Person,

Location, Organisation, (b.) Nominal modifiers: nominal phrases or clauses, (c.) Nega-

tion: markers such as no, not, (d.) Numerical Values: numeric expressions such as weights,

percentages, areas, (e.)Temporal Values: Date and Time, and (f.) Quantification: quantifiers

such as most, many, every.

Although we can easily track these expressions in a hypothesis using tools like entity

recognizers and parsers, it is non-trivial to automatically modify them with a predictable

change on the hypothesis label. For example, some label changes can only be controlled
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if the target expression in the hypothesis is correctly aligned with the facts in the premise. 

Such cases include CONTRADICT to ENTAIL, and NEUTRAL to CONTRADICT or ENTAIL, 

which are difficult without extensive expression-level annotations. Nonetheless, in several 

cases, label changes can be deterministically known even with imprecise changes in the 

hypothesis. For example, we can convert a hypothesis from ENTAIL to CONTRADICT by 

replacing a named entity in the hypothesis with a random entity of the same type.

Hence we follow the following strategy: (a) We avoid perturbations involving the 

NEUTRAL label altogether, as they often need changes in the premise (table) as well. (b) We 

generate all label-preserving and some label-flipping transformations automatically using 

the approach described below. (c) We annotate the CONTRADICT to ENTAIL label-flipping 

perturbations manually.

6.5.1 Automatic Generation of Label Preserving Transformations

To automatically perturb hypotheses, we leverage the syntactic structure of a hypothe-

sis and the monotonicity properties of function words like prepositions. First, we perform 

syntactic analysis of a hypothesis to identify named entities and their relations to title 

expressions via dependency paths.4 Then, based on the entity type, we either substitute 

or modify them. Named entities such as person names and locations are substituted 

with entities of the same type. Expressions containing numbers are modified u sing the 

monotonicity property of the prepositions (or other function words) governing them in 

their corresponding syntactic trees.

Given the monotonicity property of a preposition (see Table 6.3), we modify its gov-

erning numerical expression in a hypothesis in the same order to preserve the hypothesis 

label. Consider the hypothesis H5 refered below as Figure 6.1 which contains a preposition 

(over) with upward monotonicity. Because of upward monotonicity, we can increase the 

number of hours in H5 without altering the label.

Manual annotation of label-flipping transformations: Note that in the above example, 

modifying the numerical expression in the reverse direction (e.g., decreasing the number 

of hours) does not guarantee a label flip. We need to know the premise to be accurate. 

During the experiments, we observed that a large step (half/twice the actual number)

4We used spaCy v2.3.2 for the syntactic analysis.

https://spacy.io/
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suffices in most cases. We used this heuristic and manually curated the erroneous cases.

Additionally, all the cases of CONTRADICT to ENTAIL label-flipping perturbations were

annotated manually.5

We generated 2,891 perturbed examples from the α1 set with 1,203 instances preserving

the label and 1,688 instances flipping it. We also generated 11,550 examples from the Train

set, with 4,275 preserving and 7,275 flipping the label. Some example perturbations using

different types of expressions are listed in Table 6.4. It should be noted that there may not

be a one-to-one correspondence between the gold and perturbed examples, as a hypothesis

may be perturbed numerous times or not at all. As a result, in order for the results to

be comparable, a single perturbed example must be sampled for each gold example: we

sampled 967 from the α1 set and 4, 274 from the Train set.

6.5.2 Results and Analysis

We tested the hypothesis-only and full models (both trained on the original Train set)

on the perturbed examples, without subsequent fine-tuning on the perturbed examples.6

The results are presented in Table 6.5, with each cell representing the average accuracy

and standard deviation (subscript) across 100 samplings, with 80% of the data selected at

random in each sampling.

We note that the performance degrades substantially in both label-preserved and flipped

settings when the model is trained on just the hypotheses. When labels are flipped after

perturbations, the decrease in performance (averaged across both models) is about 25%

and 61% points, on the α1 set and Train set respectively. However, for the full model,

perturbations that retain the hypothesis label have little effect on model performance.

The contrast in the performance drop between the label-preserved and label-flipped

cases suggests that changes to the content expressions have little effect on the model’s

original predictions. Interestingly, the predictions are invariant to changes to functions

words as well, as per results on α2 in [84]. This suggests that the model might be more

prone to changes to the template or structure of a hypothesis than its lexical makeup.

Consequently, a model that relies on correlations between the hypothesis structure and

5Annotation done by an expert well versed in the NLI task.

6We analyse the impact of fine-tuning on perturbed examples in §6.8.
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the label is expected to suffer on the label-flipped cases. In case of label-preserving per-

turbations of similar kind, structural correlations between the hypothesis and the label are

retained leading to minimal drop in model performance.

The results of the hypothesis-only model on the Train set may appear slightly sur-

prising at first. However, given that the model was trained on this dataset, it seems

reasonable to assume that the model has ‘overfit‘ to the training data. Therefore, the model

is expected to be vulnerable even to slight label-preserving modifications to the examples

it was trained on, leading to the huge drop of 26%. In the same setting, for the α1 set the

performance drop is lesser, namely about 3%.

Taken together, we can conclude from these results that the model ignores the informa-

tion in the hypotheses, (thereby perhaps also the aligned facts in the premise), and instead

relies on irrelevant structural patterns in the hypotheses.

6.6 Probing Evidence Selection
Predictions of an NLI model should primarily be based on the evidence in the premise,

that is, on the facts relevant to the hypothesis. For a tabular premise, rows containing

the evidence necessary to infer the associated hypothesis are called relevant rows. Short-

circuiting the evidence in relevant rows for inference using annotation artifacts as sug-

gested in §6.5 or other spurious artifacts in irrelevant rows of the table is expected to lead

to poor generalization over unseen data.

6.6.1 Assumptions: Facts versus Common Sense

Primary Assumption: When a row is deleted or updated in a table, the truth value of

the corresponding fact(s) in that row may change from true/false to undetermined. This

assumption holds under the condition that each row in the table represents an independent

fact that is mutually exclusive of other rows. This assumption is generally applicable to

entity-centric tables, but it may not always hold true. Facts in a table are not necessarily

common sense, but they represent knowledge that can be obtained from a reliable source.

The distinction between common sense and knowledge is not always clear, and there may

be cases where the line between the two needs to be crossed.

When Assumptions Break a.k.a. the Exceptional Cases: The assumption of indepen-
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dent and mutually exclusive rows may break in certain cases, such as when dealing with

exceptions or edge cases that are not covered in common sense. In such cases, it is impor-

tant to be careful and to consider the nature of the facts being represented in the table. The

definition of what constitutes common knowledge versus non-common knowledge can be

a topic of debate, and the existence of a clear boundary may be uncertain. For examples

Platypus is a rare mammal which can lay eggs, thus removing the knowledge of mammal

from his table, can create confusion.

To better understand the model’s ability to select evidence in the premise, we use two

kinds of controlled edits: (a) automatic edits without any information about relevant rows,

and, (b) semi-automatic edits using knowledge of relevant rows via manual annotation.

The rest of the section goes over both scenarios in detail. All experiments in this section

use the full model that is trained on both premises and their associated hypotheses.

6.6.2 Automatic Probing

We define four kinds of table modifications that are agnostic to the relevance of rows

to a hypothesis: (a) row deletion, (b) row insertion, (c) row-value update, i.e., changing exist-

ing information, and (d) row permutation, i.e., reordering rows. Each modification allows

certain desired (valid) changes to model predictions.7 We examine below the case of row

deletion in detail and refer the reader to the Appendix for the others.

6.6.2.1 Row deletion

Row deletion should lead to the following desired effects: (a) If the deleted row is

relevant to the hypothesis (e.g., Length for H1), the model prediction should change to

NEUTRAL. (b) If the deleted row is irrelevant (e.g., Producer for H1), the model should

retain its original prediction. NEUTRAL predictions should remain unaffected by row

deletion.

Results and analysis: We studied the impact of row deletion on the α1, α2 and α3 test

sets. Figure 6.2 shows aggregate changes to labels after row deletions as a directed labeled

graph. The nodes in this graph represent the three labels in InfoTabS, and the edges

7In performing these modifications, we made sure that the modified table does not become inconsistent
or self-contradicting.
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denote transitions after row deletion. The source and end nodes of an edge represent

predictions before and after the modification.

We see that the model makes invalid transitions in all three datasets. Table 6.6 sum-

marizes the invalid transitions by aggregating them over the label originally predicted by

the model. The percentage of invalid transitions is higher for ENTAIL predictions than for

CONTRADICT and NEUTRAL. After row deletion, many ENTAIL examples are incorrectly

transitioning to CONTRADICT rather than to NEUTRAL. The opposite trend is observed for

the CONTRADICT predictions.

6.6.2.2 Row insertion

When we insert new information that does not contradict an existing table,8 original

predictions should be retained in almost all cases. Very rarely, NEUTRAL labels may change

to ENTAIL or CONTRADICT. For example, adding the Singles row below to our running

example table doesn’t change labels for any hypothesis except the H4 label (see Table 6.1)

changing to CONTRADICT with the additional information.

Singles | The Logical Song; Breakfast in America; Goodbye Stranger; Take the Long Way Home

Results and Analysis: Figure 6.3 shows the possible label changes after new row

insertion as a directed labeled graph, and the results are summarized in Table 6.7. Note

that all transitions from NEUTRAL are valid upon row insertion, although not all may be

accurate.

6.6.2.3 Row update

In case of row update, we only change a portion of a row value. Whole row value

substitutions are examined separately as composite operations of deletion followed by

insertion. Unlike a whole row update, changing only a portion of a row is non-trivial.

We must ensure that the updated value is appropriate for the key in question and also

avoid self-contradictions. To satisfy these constraints, we update a row with a value

from a random table with the same key and only update values in multi-valued rows.

A row update operation may have an effect on all labels. Though feasible, we consider the

8To ensure that the information added is not contradictory to existing rows, we only add rows with new
keys instead of changing values for the existing keys.
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transitions from CONTRADICT to ENTAIL to be prohibited. Unlike ENTAIL to CONTRADICT

transitions, these transitions would be extremely rare as values are updated randomly,

regardless of their semantics. For example, if we substitute pop in the multi-valued key

Genre in our running example with another genre, the hypothesis H1 is likely to change to

CONTRADICT.

Results and Analysis: The model mostly retains its predictions on row-value update

operations. Since we are updating a single value from a multi-valued key, the changes

to the table are minimal and may not be perceived by the model. As a result, we should

expect row updates to have lower impact on model predictions. This appears to be the

case, as evidenced by the results in Figure 6.4, which show that the labels do not change

drastically after update. The results in Figure 6.4 are summarized in Table 6.8.

6.6.2.4 Row permutation

By design of the premises, the order of their rows should have no effect on hypotheses

labels. In other words, the labels should be invariant to row permutation.

Results and Analysis: However, from Figure 6.5, it is evident that even a simple

shuffling of rows, where no information has been tampered with, can have a notable effect

on performance. This shows that the model is relying on row positions incorrectly, while

the semantics of a table is order invariant. We summarize the combined invalid transitions

from Figure 6.5 in Table 6.9. This suggest some form of position bias in the model.

6.6.2.5 Composition of perturbation operations

In addition to probing individual operations, we can also study their compositions. For

example, we could delete a row, and insert a different row, and so on. The composition

of these operations have interesting properties with respect to the allowed transitions. For

example, when an operation is composed with itself (e.g. two deletions), the set of valid

label changes is the same as for the operation. A particularly interesting composition is

deletion followed by an insertion, since this can be viewed as a row update.

Results and Analysis: In Figure 6.6, we show the transition graph for the composition

operation of row deletion followed by insertion and the summary of the possible transi-

tions is presented in Table 6.10.
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6.6.3 Manual Probing

Row modification for automatic probing in §6.6.2 is agnostic to the relevance of the row

to a given hypothesis. Since only a few rows (one or two) are relevant to the hypothesis,

the probing skew towards hypothesis-unrelated rows weakens the investigations into the

evidence-grounding capability of the model. Knowing the relevance of rows allows for

the creation of stronger probes. For example, if a relevant row is deleted, the ENTAIL

and CONTRADICT predictions should change to NEUTRAL. (Recall that after deleting an

irrelevant row the model should retain its original label.)

Probing by altering or deleting relevant rows requires human annotation of relevant

rows for each table-hypothesis pair. We used MTurk to annotate the relevance of rows

in the development and the test sets, with turkers identifying the relevant rows for each

table-hypothesis pair.

6.6.3.1 Inter-annotator agreement

We employed majority voting to derive ground truth labels from multiple annotations

for each row. The inter-annotator agreement macro F1 score for each of the four datasets is

over 90% and the average Fleiss’ kappa is 78 (std: 0.22). This suggests good inter-annotator

agreement. In 82.4% of cases, at least 3 out of 5 annotators marked the same relevant rows.

6.6.3.2 Results and analysis

We examined the response of the model when relevant rows are deleted. Figure 6.7

shows the label transitions. The fact that even after the deletion of relevant rows, EN-

TAIL and CONTRADICT predictions don’t change to NEUTRAL a large percentage of times

(mostly the original label remains unchanged and at other times, it changes incorrectly),

indicates that the model is likely utilizing spurious statistical patterns in the data for

making the prediction.

We summarize the combined invalid transitions for each label in Table 6.11. We see

that the percentage of invalid transitions is considerably higher compared to random row

deletion in Figure 6.2.9 The large percentage of invalid transitions in the ENTAIL and

CONTRADICT cases indicates a rather high utilization of spurious statistical patterns by

9Note that the dashed black lines from Figure 6.2 are now red in Figure 6.7, indicating invalid transitions.
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the model to arrive at its answers.

Irrelevant Row Deletion: Ideally, deletion of an irrelevant row should have no effect

on a hypothesis label. The results in Figure 6.8 and in Table 6.12 show that even irrelevant

rows have an effect on model predictions. This further illustrates that the seemingly

accurate model predictions are not appropriately grounded on evidence.

6.6.4 Human versus Model Evidence Selection

We further analyze the model’s capability for selecting relevant evidence by comparing

it with human annotators. All rows that alter the model predictions during automatic row

deletion are considered as model relevant rows and are compared to the human-annotated

relevant rows. We only consider the subset of 4600 (from 7200 annotated dev/test sets

pairs) hypothesis-table pairs with ENTAIL and CONTRADICT labels, where deleting a rele-

vant row should change the prediction to NEUTRAL.10

6.6.4.1 Results and analysis

On the human-annotated relevant rows, the model has an average precision of 41.0%

and a recall of 40.9%. Further analysis reveals that the model (a) uses all relevant rows in

27% cases, (b) uses incorrect or no rows as evidence in 52% of occurrences, and (c) is only

partially accurate in identifying relevant rows in the remaining 21% of examples. Upon

further analysing the cases in (b), we observed that the model actually ignores premises

completely in 88% (of 52%) of cases. This accounts for 46% (absolute) of all occurrences. In

comparison, in the human-annotated data, such cases only amount to < 2%.

Although, the model’s predictions are 70% correct in the 4,600 examples, only 21% can

be attributed to using all relevant evidence. The correct label in 37% of the 4,600 examples

is from irrelevant rows, with the remaining 12% of correct predictions use some, but not

all, relevant rows. We can conclude from the findings in this section that the model does

not seem to need all the relevant evidence to arrive at its predictions, raising questions

about trust in its predictions.

10We did not include the 2400 NEUTRAL examples pairs and the ambiguous 200 ENTAIL or CONTRADICT
examples that had no relevant rows as per the consensus annotation.
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6.7 Probing with Counterfactual Examples
Since InfoTabS is a dataset of facts based on Wikipedia, pre-trained language models

such as RoBERTa, trained on Wikipedia and other publicly available text, may have already

encountered information in InfoTabS during pre-training. As a result, NLI models built

on top of RoBERTaL can learn to infer a hypothesis using the knowledge of the pre-trained

language model. More specifically, the model may be relying on “confirmation bias”, in

which it selects evidence/patterns from both premise and hypothesis that matches its prior

knowledge. While world knowledge is necessary for table NLI [182], models should still

treat the premise as the primary evidence.

Counterfactual examples can help test whether the model is grounding its inference

on the evidence provided in the tabular premise. In such examples, the tabular premise

is modified such that the content does not reflect the real world. In this study, we limit

ourselves to modifying only the ENTAIL and CONTRADICT examples. We omit the NEU-

TRAL cases because the majority of them in InfoTabS involve out-of-table information;

producing counterfactuals for them is much harder and involves the laborious creation of

new rows with the right information.

The task of creating counterfactual tables presents two challenges. First, the modified

tables should not be self-contradictory. Second, we need to determine the labels of the

associated hypotheses after the table is modified. We employ a simple approach to gen-

erate counterfactuals that addresses both challenges. We use the evidence selection data

(§6.6.3) to gather all premise-hypothesis pairs that share relevant keys such as “Born”,

“Occupation” etc. Counterfactual tables are generated by swapping the values of relevant

keys from one table to another.11

Figure 6.9 shows an example. We create counterfactuals from the premises in Table 6.1

and Figure 6.1 by swapping their Length rows. We also swap the hypotheses (H1 and H5)

aligned to the Length rows in both premises by replacing the title expression Bridesmaids

in H5 with Breakfast in America and vice versa. The simple procedure ensures that the

hypotheses labels are left unchanged in the process, resulting in high-quality data.

In addition, we also generated counterfactuals by swapping the table title and associ-

11There may still be a few cases of self-contradiction, but we expect that such invalid cases would not exist
in the rows that are relevant to the hypothesis.
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ated expressions in the hypotheses with the title of another table, resulting in a counterfac-

tual table-hypothesis pair, as in the row swapping strategy. Figure 6.10 shows an example

created from the premises in Table 6.1 and Figure 6.1 by swapping the title rows Breakfast

in America and Bridesmaids. The title expression in all hypotheses in Table 6.1 are also

replaced by Bridesmaids. This strategy also preserves the hypothesis label similar to row

swapping.

The above approaches are Label Preserving as they do not alter the entailment labels.

Counterfactual pairs with flipped labels are important for filtering out the contribution of

artifacts or other spurious correlations that originate from a hypothesis (see §6.5). So, in

addition, we also created counterfactual table-hypothesis pairs where the original labels

are flipped. These counterfactual cases are, however, non-trivial to generate automatically,

and are therefore created manually. To create the Label-Flipped counterfactual data, three

annotators manually modified tables from the Train and α1 datasets corresponding to EN-

TAIL and CONTRADICT labels, producing 885 counterfactual examples from the Train set

and 942 from the α1 set. The annotators cross-checked the labels to determine annotation

accuracy, which was 88.45% for the Train set and 86.57% for the α1 set.

6.7.1 Results and Analysis

We tested both hypothesis-only and full (Prem+Hypo) models on the counterfactual

examples created above, without fine-tuning on a subset of these examples. The results are

presented in Table 6.13 where each cell represents average accuracy and standard deviation

(subscript) over 100 sets of 80% randomly sampled counterfactual examples. We see that

the (Prem+Hypo) model is not robust to counterfactual perturbations. On the label-flipped

counterfactuals, the performance drops down to close to a random prediction (48.70%

for Train and 44.01% for α1). The performance on the label-preserved counterfactuals is

relatively better which leads us to conjecture that the model largely exploits artifacts in

hypotheses.

Due to over-fitting, the Train set has a larger drop of 15.85%, compared to only 2.70%

on the α1 set on the label-preserved examples. Moreover, the drop in performance for both

Prem+Hypo and Hypo-Only models is comparable to their performance drop on the original

table-hypothesis pairs. This shows that, regardless of whether the relevant information in
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the premise is accurate, both models rely substantially on hypothesis artifacts. On the

Label-Flipped counterfactuals, the large drop in accuracy could be due to both ambiguous

hypothesis artifacts or counterfactual information.

To disentangle these two factors, we can take advantage of the fact that the counter-

factual examples are constructed from, and hence paired with, the original examples. This

allows us to examine pairs of examples where the full model makes an incorrect prediction

on one, but not the other. Especially of interest are the cases where the full model makes

a correct prediction on the original example, but not on the corresponding counterfactual

example.

Table 6.14 shows the results of this analysis. Each row represents a condition corre-

sponding to whether the full and the hypothesis-only models are correct on the original

example. The two cases of interest, described above, correspond to the second and fourth

rows of the table. The second row shows the case where the full model is correct on the

original example (and not on the counter-factual example), but the hypothesis-only model

is not. Since we can discount the impact of hypothesis bias in these examples, the error

in the counter-factual version could be attributed to reliance on pre-trained knowledge.

Unsurprisingly, there are no such examples in the training set. In the α1 set, we see

a substantial fraction of counterfactual examples (11.79%) belong to this category. The

last row considers the case where the hypothesis-only model is correct. We see that this

accounts for a larger fraction of the counterfactual errors, both in the training and the α1

sets. Among these examples, despite the (albeit unfortunate) fact that the hypothesis alone

can support a correct prediction, the model’s reliance on its pre-trained knowledge leads

to errors in the counterfactual cases.

The results, taken in aggregate, suggest that the model produces predictions based on

hypothesis artifacts and pre-trained knowledge rather than the evidence presented to it,

thus impacting its robustness and generalization.

6.8 Inoculation by Fine-Tuning
Our probing experiments demonstrate that the models, trained on the InfoTabS train-

ing set, failed along all three dimensions that we investigated. This leads us to the follow-

ing question: Can additional fine-tuning with perturbed examples help?
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[155] point out that poor performance on challenging datasets can be ascribed to either

a weakness in the model, a lack of diversity in the dataset used for training or information

leakage in the form of artifacts.12 They suggest that models can be further fine-tuned on

a few challenging examples to determine the possible source of degradation. Inoculation

can lead to one of three outcomes: (a) Outcome 1: The performance gap between the

challenge and the original test sets reduces, possibly due to addition of diverse examples,

(b) Outcome 2: Performance on both the test sets remains unchanged, possibly because of

the model’s inability to adapt to the new phenomena or the changed data distribution, or,

(c) Outcome 3: Performance degrades on the test set, but improves on the challenge set,

suggesting that adding new examples introduces ambiguity or contradictions.

We conducted two sets of inoculation experiments to help categorize performance degra-

dation of our models into one of these three categories. For each experiment described

below, we generated additional inoculation datasets with 100, 200 and 300 examples to

inoculate the original task-specific RoBERTaL models trained on both premises and hy-

potheses. As in the original inoculation work, we created these adversarial datasets by

sub-sampling inclusively, i.e., the smaller datasets are subsets of the larger ones. Following

the training protocol in [155], we tried learning rates of 10−4, 5 × 10−5 and 10−5. We

performed inoculation for a maximum of 30 epochs with early stopping based on the

development set accuracy. We found that with the first two learning rates, the model does

not converge, and underperforms on the development set. The model performance was

best with the learning rate of 10−5, which we used throughout the inoculation experiments.

The standard deviation over 100 sample splits for all experiments was ≤ 0.91.

6.8.1 Annotation Artifacts

Table 6.15 shows the results on the hypothesis-perturbed examples (from §6.5), and

Table 6.16 shows the performance of the inoculated models on the original InfoTabS test

sets. We see that fine-tuning on the hypothesis-perturbed examples decreases performance

on the original α1, α2 and α3 test sets, but performance improves on the more difficult

label-flipped examples of the hypothesis-perturbed test set.

12Model weakness is the inherent inability of a model (or a model family) to handle certain linguistic
phenomena.
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6.8.2 Counterfactual Examples

Tables 6.17 and 6.18 show the performance of models inoculated on the original In-

foTabS test sets and the counterfactual examples from §6.7 respectively. Once again, we 

see that fine-tuning on counterfactual examples improves performance on the adversarial 

counterfactual examples test set, at the cost of performance on the original test sets.

6.8.3 Analysis

We see that both experiments above belong to Outcome 3, where the performance im-

proves on the challenge set, but degrades on the test set(s). The change in the distribution 

of inputs hurts the model: we conjecture that this may be because the RoBERTaL model 

exploits data artifacts in the original dataset but fails to do so for the challenge dataset and 

vice versa.

We expect our model to handle both original and challenge datasets, at least after fine-

tuning (i.e., it should belong to Outcome 1). Its failure points to the need for better models 

or training regimes.

6.9 Discussion and Related Work
6.9.1 What Did We Learn?

Firstly, through systematic probing, we have shown that despite good performance 

on the evaluation sets, the model for tabular NLI fails at reasoning. From the analysis 

of hypothesis perturbations (§6.5), we show that the model heavily relies on correlations 

between a hypothesis’ sentence structure and its label. Models should be systematically 

evaluated on adversarial sets like α2 for robustness and sensitivity. This observation is con-

cordant with multiple studies that probe deep learning models on adversarial examples in 

a variety of tasks such as question answering, sentiment analysis, document classification, 

natural language inference, etc. [79, 139, 221, 222, 253].

Secondly, the model does not look at correct evidence required for reasoning, as is evi-

dent from the evidence-selection probing (§6.6). Rather, it leverages spurious patterns and 

statistical correlations to make predictions. A recent study by [139] on question-answering 

shows that models indeed leverage spurious patterns to answer a large fraction (60-70%) 

of questions.
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Thirdly, from counterfactual probes (§6.7), we found that the model relies on knowl-

edge of pre-trained language models than on tabular evidence as the primary source of

knowledge for making predictions. This is in addition to the spurious patterns or hypoth-

esis artifacts leveraged by the model. Similar observations are made by [38, 72, 99, 108,

119, 154, 259, 272, 299] for unstructured text.

Finally, from the inoculation study (§6.8), we found that fine-tuning on challenge sets

improves model performance on challenge sets but degrades on the original α1, α2, and α3

test sets. That is, changes in the data distribution during training have a negative impact

on model performance. This adds weight to the argument that the model relies excessively

on data artifacts.

6.10 Conclusion
This chapter presented a targeted probing study to highlight the limitations of tabular

inference models using a case study on a tabular NLI task on InfoTabS. Our findings

show that despite good performance on standard splits, a RoBERTa-based tabular NLI

model, fine-tuned on the existing pre-trained language model, fails to select the correct

evidence, makes incorrect predictions on adversarial hypotheses, and is not grounded in

provided evidence–counterfactual or otherwise. We expect that insights from the study

can help in designing rationale selection techniques based on structural constraints for

tabular inference and other tasks. While inoculation experiments showed partial success,

diverse data augmentation may help mitigate challenges. However, annotation of such

data can be expensive. It may also be possible to train models to satisfy domain-based

constraints [142] to improve model robustness. Finally, probing techniques described here

may be adapted to other NLP tasks involving tables such as tabular question answering

and tabular text generation.
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Bridesmaids

Length 125 minutes

H5: Bridesmaids has a running time of over 3 hrs.

Figure 6.1: Hypothesis H5 contradicts the premise.
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Figure 6.2: Changes in model prediction after row deletion. Red lines represent invalid transi-
tions. Dashed and solid lines represent valid transitions for irrelevant and relevant row deletion
respectively. * represents valid transitions with either row deletions. The edge labels represents the
percentage of transitions for α1, α2 and α3 set in order.
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4.32, 4.32, 4.16

1.23, 1.73, 1.23*

2.56, 2.05, 3.47

2.45, 2.22, 2.19

*

Figure 6.3: Changes in model predictions after new row insertion. (Notation similar to Figure 6.2)
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C

E N

99.51, 99.69, 99.81

99.63, 99.69, 99.999.7, 99.24, 99.63

0.23, 0.53, 0.25

0.3, 0.21, 0.09

0.08, 0.22, 0.12

0.19, 0.09, 0.10

*

0.26, 0.20, 0.02

0.12, 0.11, 0.07

Figure 6.4: Changes in model predictions after row value update. (Notation similar to Figure 6.2)

C

E N

88.37, 91.25, 86.30

92.94, 93.10, 87.5590.75, 87.74, 85.41

6.95, 5.76, 6.91

3.47, 4.82, 6.82

4.65, 2.96, 6.85

*

3.24, 3.78, 5.84

*

*

3.82, 3.12, 6.615.78, 7.44, 7.77

Figure 6.5: Changes in model predictions after shuffling of table rows. (Notation similar to Figure
6.2.)

C

E N

86.67, 87.46, 86.35

3.0
2,

6.5
3,

4.1
6

9.8
1,

7.8
8,

6.7
2

7.47, 7.15, 6.11

1.76, 2.07, 3.28

86.03, 89.19, 89.13

95.42, 91.40, 92.56

5.66, 5.39. 7.53

4.16, 2.93, 4.15

Figure 6.6: Changes in model predictions after deletion followed by an insert operation. (Notation
similar to Figure 6.2.)
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C

E N

91.62, 93.42, 91.99

21
.00

, 2
3.4

2,
16

.64

4.8
9,

7.6
7,

3.5
3

1.07, 1.05, 2.04

24.59, 25.3, 22.68

72.13, 73.43, 74.27

54.41, 51.28, 60.67

7.32, 5.53, 5.97

22.99, 18.90, 22.21

Figure 6.7: Changes in model prediction after deletion of relevant rows. Red lines represent in-
valid transitions while solid lines represent valid transitions. The edge labels represent transitions
for α1, α2 and α3 set in order.

C

E N

96.12, 96.46, 94.99

2.7
6,

4.0
5,

3.4
6

2.9
3,

2.9
4,

2.9
4

1.85, 1.62, 2.32

2.38, 2.92, 2.63

94.06, 94.92 , 93.09

94.86, 93.03, 93.91

2.05, 1.92, 2.69

3.01, 2.15, 3.96

Figure 6.8: Change in model predictions after deletion of an irrelevant row. (Notation similar to
Figure 6.2.)

Breakfast in America

Released 29 March 1979
Recorded May–December 1978
Studio The Village Recorder (Studio B) in Los Angeles
Genre pop ; art rock ; soft rock
Length 125 minutes
Label A&M
Producer Peter Henderson, Supertramp

Ĥ5: Breakfast in America has a running time of over 3 hrs.

Figure 6.9: Counterfactual table-hypothesis pair created from Table 6.1 and Figure 6.1. Only the
values of ‘Length’ rows are swapped, rest of the rows from Table 6.1 are copied as such.
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Bridesmaids

Released 29 March 1979
Recorded May–December 1978
Studio The Village Recorder (Studio B) in Los Angeles
Genre pop ; art rock ; soft rock
Length 46:06
Label A&M
Producer Peter Henderson, Supertramp

Ĥ1: Bridesmaids is a pop album with a length of 46 minutes.

Ĥ2: Bridesmaids was released at the end of 1979.

Ĥ3: Most of Bridesmaids was recorded in the last month of 1978.

Ĥ4: Bridesmaids has 6 tracks.

Figure 6.10: A counterfactual tabular premise and the associated hypotheses created from Table
6.1. The hypotheses Ĥ1 is entailed by the premise, Ĥ2 contradicts it, and Ĥ3 and Ĥ4 are neutral.
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Table 6.1: A tabular premise example. The hypotheses H1 is entailed by it, H2 contradicts it, and
H3, H4 are neutral i.e. neither entailed nor contradictory.

Breakfast in America

Released 29 March 1979
Recorded May–December 1978
Studio The Village Recorder (Studio B) in Los Angeles
Genre pop ; art rock ; soft rock
Length 46:06
Label A&M
Producer Peter Henderson, Supertramp

H1: Breakfast in America is a pop album with a length of 46 minutes.

H2: Breakfast in America was released at the end of 1979.

H3: Most of Breakfast in America was recorded in the last month of 1978.

H4: Breakfast in America has 6 tracks.

Table 6.2: Results of the Table as a Paragraph strategy on InfoTabS subsets with RoBERTaL model,
hypothesis-only baseline and majority human agreement. The first three rows are reproduced
from [84]. The last row represents the average performances (and standard deviations as sub-
scripts) using models obtained via five-fold cross validation (5xCV).

Model dev α1 α2 α3

Human 79.78 84.04 83.88 79.33
Hypothesis Only 60.51 60.48 48.26 48.89
RoBERTaL 75.55 74.88 65.55 64.94
5xCV 73.59(2.3) 72.41(1.4) 63.02(1.9) 61.82(1.4)

Table 6.3: Monotonicity properties of prepositions.

Preposition Upward Monotonicity Downward Monotonicity

over CONTRADICT ENTAIL
under ENTAIL CONTRADICT
more than CONTRADICT ENTAIL
less than ENTAIL CONTRADICT
before ENTAIL CONTRADICT
after CONTRADICT ENTAIL

Table 6.4: Example hypothesis perturbations for the running example from Table 6.1. The red
italicized text represent changes. Superscripts E/C represent gold ENTAIL and CONTRADICT labels,
while subscripts E/C represent new labels.

Type of Modification Perturbed Hypothesis

Nominal Modifier H1E
E: Breakfast in America which was produced by Pert Handerson is a pop

album of 46 minutes length.
Temporal Expression H1E

C: Breakfast in America is a pop album with a length of 56 minutes.
Negation H2C

E : Breakfast in America was not released towards the end of 1979.
Temporal Expression H2C

C: Breakfast in America was released towards the end of 1989.
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Table 6.5: Results of the Hypothesis-only model and Prem-Hypo RoBERTaL model (trained on
hypothesis and premise together) on the gold and perturbed examples from the Train and α1
sets. Main numbers are the mean and subscript(·) is corresponding std. calculated with 80% data
random splits over 100 times.

Model Original Label Preserved Label Flipped

Train Set (w/o NEUTRAL)

Prem+Hypo 99.44(0.06) 92.98(0.20) 53.92(0.28)
Hypo-Only 96.39(0.13) 70.23(0.35) 19.23(0.27)

α1 Set (w/o NEUTRAL)

Prem+Hypo 68.94(0.76) 69.56(0.77) 51.48(0.86)
Hypo-Only 63.52(0.75) 60.27(0.85) 31.02(0.63)

Table 6.6: Percentage of invalid transitions after row deletion.

Dataset α1 α2 α3 Average

ENTAIL 5.76 7.26 5.01 6.01
NEUTRAL 4.43 3.91 5.24 4.53
CONTRADICT 3.23 3.70 3.01 3.31

Average 4.47 4.96 4.42 -

Table 6.7: Percentage of invalid transitions after new row insertion. For an ideal model, all these
numbers should be zero.

Dataset α1 α2 α3 Average

ENTAIL 2.81 4.99 2.51 3.44
NEUTRAL 0 0 0 0
CONTRADICT 6.77 6.54 6.35 6.55

Average 3.19 3.84 2.95 -

Table 6.8: Percentage of invalid transitions after row value update. For an ideal model, all these
numbers should be zero.

Dataset α1 α2 α3 Average

ENTAIL 0.08 0.22 0.12 0.14
NEUTRAL 0.12 0.11 0.09 0.11
CONTRADICT 0.49 0.30 0.19 0.33

Average 0.23 0.21 0.13 -
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Table 6.9: Percentage of invalid transitions after row permutations. For an ideal model, all these
numbers should be zero.

Dataset α1 α2 α3 Average

ENTAIL 9.25 12.2 14.6 12.02
NEUTRAL 7.1 6.8 12.5 8.79
CONTRADICT 11.6 8.76 13.7 11.36

Average 9.34 9.26 13.6 -

Table 6.10: Percentage of invalid transitions after deletion followed by an insertion operation. For
an ideal model, all these numbers should be zero.

Datasets α1 α2 α3 Average

ENTAIL 3.02 6.53 4.16 4.57
NEUTRAL 0.00 0.00 0.00 0.00
CONTRADICT 9.81 7.88 6.71 8.13

Average 4.28 4.80 3.63 -

Table 6.11: Percentage of invalid transitions following deletion of relevant rows. For an ideal
model, all these numbers should be zero.

Dataset α1 α2 α3 Average

ENTAIL 75.41 74.70 77.31 75.80
NEUTRAL 8.39 6.58 8.01 7.66
CONTRADICT 77.02 81.10 77.80 78.64

Average 53.60 54.14 54.35

Table 6.12: Percentage of invalid transitions after deletion of irrelevant rows. For an ideal model,
all these numbers should be zero.

Datasets α1 α2 α3 Average

ENTAIL 5.14 6.97 6.09 6.07
NEUTRAL 3.9 3.54 5.01 4.15
CONTRADICT 5.94 5.09 6.91 5.98

Average 4.99 5.2 6.01 -
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Table 6.13: Results of the Hypothesis-only and Prem-Hypo RoBERTaL models (trained on hy-
pothesis and premise together) on the gold and counterfactual examples from the Train and α1
sets. Each entry denotes the mean(stdev) calculated with 80% data random splits over 100 times.

Model Original Label Preserved Label Flipped

Train Set (w/o NEUTRAL)

Prem+Hypo 94.38(0.39) 78.53(0.65) 48.70(0.72)
Hypo-Only 99.94(0.06) 82.23(0.65) 00.06(0.01)

α1 Set (w/o NEUTRAL)

Prem+Hypo 71.99(0.69) 69.65(0.78) 44.01(0.72)
Hypo-Only 60.89(0.76) 58.19(0.91) 27.68(0.65)

Table 6.14: Comparison of results of the full and hypothesis-only models on the original and coun-
terfactual examples. O-THP and C-THP represent original and counterfactual table-hypothesis
pairs, O-Hypo represents hypotheses from the original data, ✓ represents correct predictions and
✗ represents incorrect predictions.

Prem+Hypo Hypo-Only Dataset

C-THP O-THP O-Hypo Train α1

✓ ✗ ✗ 0.00 11.43
✗ ✓ ✗ 0.00 11.79
✓ ✗ ✓ 3.57 6.48
✗ ✓ ✓ 49.36 33.12

Table 6.15: Performance of the inoculated models on the hypothesis perturbed InfoTabS sets.
Variance across 100 sample splits was ≤ 0.91.

#Samples Original Label Preserved Label Flipped

Train Set (w/o NEUTRAL)

0 (w/o Ino) 99.44 92.98 53.92
100 97.24 95.58 79.25
200 97.24 95.65 78.75
300 97.24 95.64 78.74

α1 Set (w/o NEUTRAL)

0 (w/o Ino) 68.94 69.56 51.48
100 68.05 65.67 57.91
200 68.37 66.29 57.49
300 68.36 66.29 57.49
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Table 6.16: Performance of the inoculated models on the original InfoTabS test sets. Variance
across 100 sample splits was ≤ 0.91.

#Samples α1 α2 α3

0 (w/o Ino) 74.88 65.55 64.94
100 67.44 62.17 58.51
200 67.34 61.88 58.61
300 67.24 61.84 58.62

Table 6.17: Performance after inoculation by fine-tuning on the original InfoTabS test sets.

#Samples α1 α2 α3

0 (w/o Ino) 74.88 65.55 64.94
100 69.72 63.88 59.66
200 69.88 63.78 58.89
300 67.34 62.23 57.58

Table 6.18: Performance after inoculation fine-tuning on the InfoTabS counterfactual example
sets.

#Samples Original Label Preserved Label Flipped

Train Set (w/o NEUTRAL)

0 (w/o Ino) 94.38 78.53 48.70
100 91.82 84.61 57.62
200 92.46 84.92 59.43
300 91.08 83.54 63.58

α1 Set (w/o NEUTRAL)

0 (w/o Ino) 71.99 69.65 44.01
100 66.05 75.03 50.40
200 65.86 75.03 50.57
300 65.59 74.23 52.09



CHAPTER 7

TRUSTWORTHY TABULAR REASONING

Adapted from V. Gupta, S. Zhang, A. Vempala, Y. He, T. Choji, and V. Srikumar, Right

for the right reason: Evidence extraction for trustworthy tabular reasoning, in Proceedings of the

60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland,

May 22-27, 2022, Association for Computational Linguistics, pp. 3268–3283.

In Chapter 6, we demonstrates that tabular reasoning models fail to reason properly

on the semi-structured inputs in many cases. For example, they can ignore relevant rows,

and (a) focus on the irrelevant rows [182], (b) use only the hypothesis sentence [87, 202],

or (c) knowledge acquired during pre-training [83, 104]. In essence, they use spurious

correlations between irrelevant rows, the hypothesis, and the inference label to predict

labels.

This chapter argues that existing NLI systems optimized solely for label prediction

cannot be trusted. It is not sufficient for a model to be merely Right but also Right for the

Right Reasons. In particular, at least identifying the relevant elements of inputs as the ‘Right

Reasons’ is essential for trustworthy reasoning1. We address this issue by introducing the

task of Trustworthy Tabular Inference, where the goal is to extract relevant rows as evidence

and predict inference labels.

To illustrate this task, consider an example from the InfoTabS dataset in Table 7.1,

which shows a premise table and three hypotheses. The figure also marks the rows needed

to make decisions about each hypothesis, and also indicates the relevant tokens for each

hypothesis. For trustworthy tabular reasoning, in addition to predicting the label ENTAIL

for H1, CONTRADICT for H2 and NEUTRAL for H3, the model should also identify the

evidence rows—namely, the rows Producer and Length for hypothesis H1, Recorded for

hypothesis H2, Released and Recorded for hypothesis H3.

1We argue that a reasoning system can be deemed trustworthy only if it exposes how its decisions are
made, thus admitting verification of the reasons for its decisions.
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As a first step, we propose a two-stage sequential prediction approach for the task,

comprising of an evidence extraction stage, followed by an inference stage. In the evidence

extraction stage, the model extracts the necessary information needed for the second stage.

In the inference stage, the NLI model uses only the extracted evidence as the premise for

the label prediction task.

We explore several unsupervised evidence extraction approaches for InfoTabS. Our

best unsupervised evidence extraction method outperforms a previously developed base-

line by 4.3%, 2.5% and 5.4% absolute score on the three test sets. For supervised evidence

extraction, we annotate the InfoTabS training set (17K table-hypothesis pairs with 1740

unique tables) with relevant rows following the methodology of [83], and then train a

RoBERTaLARGE classifier. The supervised model improves the evidence extraction perfor-

mance by 8.7%, 10.8%, and 4.2% absolute scores on the three test sets over the unsuper-

vised approach. Finally, for the full inference task, we demonstrate that our two-stage

approach with best extraction, outperforms the earlier baseline by 1.6%, 3.8%, and 4.2% on

the three test sets. This work is published at ACL 2022 as [85].

7.1 Contributions
We make the following contributions in this chapter 2:

1. We introduce the problem of trustworthy tabular reasoning and study a two-stage

prediction approach that first extracts evidence and then predicts the NLI label.

2. We investigate a variety of unsupervised evidence extraction techniques. Our unsu-

pervised approach for evidence extraction outperforms the previous methods.

3. We enrich the InfoTabS training set with evidence rows, and develop a supervised

extractor that has near-human performance.

4. We demonstrate that our two-stage technique with best extraction outperforms all

the prior benchmarks on the downstream NLI task.

7.2 Background
7.2.1 Interpretability and Explainability

Model interpretability can either be through explanations or by identifying the evi-

dence for the predictions [52, 63, 105, 192, 234, 279]. Additionally, NLI models [78, 103, 155,

2The updated dataset, along with associated code, is available at https://tabevidence.github.io/.

https://tabevidence.github.io/
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167, 179, 184, 218, 219, 220, 307] must be subjected to numerous test sets with adversarial

settings. These settings can focus on various aspects of reasoning, such as perturbed

premises for evidence selection [83], zero-shot transferability (α3), counterfactual premises

[104], and contrasting hypotheses α2. Recently, [130] introduced Natural-language Infer-

ence over Label-specific Explanations (NILE), an NLI approach for generating labels and

accompanying faithful explanations using auto-generated label-specific natural language

explanations. Our work focuses on the extraction of label-independent evidence for correct

inference, rather than on the generation of abstractive explanations for a given label.

7.2.2 Tabular Shared Tasks

The SemEval’21 Task 9 [226] and FEVEROUS’21 shared task [5] are conceptually close

to this work.

The SemEval task focuses on statement verification and evidence extraction using rela-

tional tables from scientific articles. In this work, we focus on item evidence extraction for

non-scientific Wikipedia Infobox entity tables, proposed a two-stage sequential approach,

and used the InfoTabS dataset which has complex reasoning and multiple adversarial

tests for robust evaluation.

The FEVEROUS’21 shared task focuses on verifying information using unstructured

and structured evidence from open-domain Wikipedia. Our approach concerns evidence

extraction from a single table rather than open-domain document, table or paragraph

retrieval. Furthermore, we are only concerned with entity tables rather than relational

tables or unstructured text, while the FEVEROUS data has relational tables, unstructured

text, and fewer entity tables.

7.3 Task Formulation
We begin by introducing the task and the datasets we use.

7.3.1 Tabular Inference

Tabular inference is a reasoning task that, like conventional NLI [17, 45, 280], asks

whether a natural language hypothesis can be inferred from a tabular premise. Concretely,

given a premise table T with m rows {r1, r2, . . . , rm}, and a hypothesis sentence H, the task

maps them to ENTAIL (E), CONTRADICT (C) or NEUTRAL (N).
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We can denote the mapping as follows.

f (T, H)→ y (7.1)

where, y ∈ {E, N, C}. For example, for the tabular premise in Table 7.1, the model should

predict E, C, and N for the hypotheses H1, H2, and H3, respectively.

7.3.2 Trustworthy Tabular Inference

Trustworthy Tabular Inference is a table reasoning problem that seeks not just the NLI

label, but also relevant evidence from the input table that supports the label prediction.

We use TR, a subset of T, to denote the relevant rows or evidence. Then, the task is defined

as follows.

f (T, H)→ {TR, y} (7.2)

In our example table, this task will also indicate the evidence rows TR of Producer and

Length for hypothesis H1, Recorded for hypothesis H2, and Released and Recorded for hy-

pothesis H3.

While the notion of evidence is well-defined for the ENTAIL and CONTRADICT labels,

the NEUTRAL label requires explanation. To decide on the NEUTRAL label, one must first

search for relevant rows (if any), i.e., identify evidence in the premise tables. In fact, this is

a causally correct sequential approach. Indeed, InfoTabS has multiple neutral hypotheses

that are partly entailed by the table; if any part of a hypothesis contradicts the table,

then the inference label should be CONTRADICT. For example, in our example table, the

premise table indicates that the album was recorded in 1978, emphasizing the importance

of the Recorded row for the hypothesis H2. For NEUTRAL examples, we refer to any such

pertinent rows as evidence.

7.3.3 Dataset Details

There are several datasets for tabular NLI: TabFact, InfoTabS, and the SemEval’21 Task

9 [226] and the FEVEROUS’21 shared task [5] datasets. We use the InfoTabS data in this

work. It contains finer-grained annotation (e.g., TabFact lacks NEUTRAL hypotheses) and

more complex reasoning than the others3.

The dataset consists of 23, 738 premise-hypothesis pairs collected via crowdsourcing

3As per [84], 33% of examples in InfoTabS involve multiple rows. The dataset covers all the reasoning
types present in the Glue [270] and SuperGlue [269] benchmarks.
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on Amazon MTurk. The tabular premises are based on 2, 540 Wikipedia Infoboxes repre-

senting twelve diverse domains, and the hypotheses are short statements paired with NLI

labels. All tables contain a title followed by two columns (cf. Table 7.1); the left columns

are keys and the right ones are values).

In addition to the train and development sets, the data includes multiple test sets, some

of which are adversarial: α1 represents a standard test set that is both topically and lexically

similar to the training data; α2 hypotheses are designed to be lexically adversarial4; and

α3 tables are drawn from topics unavailable in the training set. The dev and test set,

comprising of 7200 table-hypothesis pairs, were recently extended with crowdsourced

evidence rows [83]. As one of our contributions, we describe the evidence rows annotation

for the training set in the next Section 7.4.

7.4 Crowdsource Evidence Extraction
This section describes the process of using Amazon MTurk to annotate evidence rows

for the 16, 538 premise-hypothesis pairs that make the training set of InfoTabS. We fol-

lowed the protocol of [83]: one table and three distinct hypotheses formed a HIT. For each

of the hypotheses, five annotators would select the evidence rows. We divide the tasks

equally into 110 batches, each batch having 51 HITs each having three examples. To reduce

bias induced by a link between the NLI label and row selection, we do not reveal the labels

to the annotators.

Since many hypothesis sentences (especially those with neutral labels) require out-of-

table information for inference, we introduced the option to choose out-of-table (OOT)

pseudo rows, which are highlighted only when the hypothesis requires information that is

not common (i.e. common sense) and missing from the table. To reduce any possible bias

due to unintended associations between the NLI label and the row selections (e.g., using

OOT for neutral examples), we avoid showing inference labels to the annotators5.

Human Annotation Quality Control: To assess an annotator, we compare their anno-

tations with the majority consensus of other annotators’ (four) annotations. We perform

4i.e. minimally perturbing hypothesis to flipped ENTAIL to CONTRADICT label and vice-versa.

5Because of the random sequence and unbalanced nature, each of the three hypothesis sentences can have
any NLI label, i.e., in total 33 = 27 possibilities.
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this comparison at two levels: (a) local-consensus-score on the most recent batch, and

(b) cumulative-consensus-score on all batches annotated thus far.We use these consensus

scores to temporarily (local-consensus-score) or permanently (cumulative score) block the

poor annotators from the task. We also review the annotations manually and provide

feedback with more detailed instructions and personalized examples for annotators who

were making mistakes due to ambiguity in the task. We give incentives to annotators who

received high consensus scores. As in previous work, we removed certain annotators’

annotations that have a poor consensus score (cumulative score) and published a second

validation HIT to double-check each data point if necessary.

In total, we collected 81,282 annotations from 90 distinct annotators. Overall, twenty

five annotators completed over 1000 tasks, corresponding to 87.75 % of the examples, indi-

cating a tail distribution with the annotations. Overall, 16,248 training set table-hypothesis

pairs were successfully labeled with the evidence rows6. On average, we obtain 89.49%

F1-score with equal precision and recall for annotation agreement when compared with

majority vote. Furthermore, 85% examples have an F1-score of >80 %, and 62% examples

have an F1-score of >90 %. Around 60% examples have either perfect (100%) precision

or recall, and 42% have both. Table 7.2 reports the Fleiss’ Kappa score with annotation

percentage. The average Kappa score is 0.79 with standard deviation of 0.237.

7.4.1 Choice of Semi-Structured Data

The rows of an Infobox table are semantically distinct, though all connected to the title

entity. Each row can be considered a separate and uniquely distinct source of information

about the title entity. Because of this property, the problem of evidence extraction is well-

formed as relevant row selection. The same is not valid for unstructured text, whose units

of information may be tokens, phrases, sentences or entire paragraphs, and is typically

unavailable [79, 172, 221, 292].

6We exclude certain example pairings from our training sets since they could not achieve satisfactory
agreement after adding more annotators or have label imbalance issues i.e. more the required number of
neutrals.

7We also manually examined hypothesis phrases that signal relevant rows. See Appendix D.2 for details.
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7.5 Trustworthy Tabular Inference
Trustworthy inference has an intrinsic sequential causal structure: extract evidence

first, then predict the inference label using the extracted evidence data, knowledge/common

sense, and perhaps formal reasoning [93, 192].8 To operationalize this intuition, we chose

a two-stage sequential approach which consists of an evidence extraction followed by the

NLI classification, as shown in Figure 7.1.

Notation: The function f in Eq. 7.2 can be rewritten with functions g and h, f (.) = g(.),

h ◦ g(.), as

f (T, H) = {g(T, H) , h (g(T, H), H)} (7.3)

Here, g extracts the evidence rows TR subset of T, and h uses the extracted evidence TR

and the hypothesis H to predict the inference label y, as

g(T, H)→ TR

h(TR, H)→ y
(7.4)

To obtain f , we need to define the functions g and h, and a flexible representation of a 

semi-structured table T. To represent a table T, we use the Better Paragraph Representation 

(BPR) heuristic of [182]. BPR uses hand-crafted rules based on the table category and 

entity type’s of the row values (e.g., boolean and date) to convert each row to a sentence, 

consisting of table title, key and values. This representation outperforms the original 

“para” representation technique of [84].

We explore unsupervised (§7.5.1) and supervised (§7.5.2) methods for the evidence row 

extractor g.

7.5.1 Unsupervised Evidence Extraction

The unsupervised approaches extract Top-K rows are based on relevance scores, where 

K is a hyper-parameter. We use the cosine similarity between the row and the hypothesis 

sentence representations to score rows. We study three ways to define relevance described 

next.

8See more details discussion in §7.8.
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7.5.1.1 Using static embeddings

Inspired by the Distracting Row Removal (DRR) heuristic of [182], we propose DRR 

(Re-Rank + Top-Sτ), which uses fastText [115, 168] based static embeddings to measure 

sentence similarity. We employ three modifications to improve DRR.

Re-rank (δ): We observed that the raw similarity scores (i.e., using only fastText) for 

some valid evidence rows could be low, despite exact word-level lexical matching with the 

row’s key and values. We augmented the scores by δ for each exact match to incentivize 

precise matches.

Sparse extraction (S): For most instances, the number of relevant rows (K) is much 

lower than the total number of rows (m); most examples have only one or two relevant 

rows. We constrained the sparsity in the extraction by capping the value of K to S ≪ m.

Dynamic selection (τ): We use a threshold τ to select rows dynamically Top-Kτ based 

on the hypothesis, rather than always selecting fixed K r ows. We only select rows whose 

similarity (after Re-Ranking) to the hypothesis sentence representations is greater than a 

threshold τ. We adopt this strategy because (a) the number of rows in the premise table 

can vary across examples, and (b) different hypotheses may require a differing number of 

evidence rows.

7.5.1.2 Using word alignments

This approach consists of two parts (a) aligning rows and hypothesis words, and (b) then 

computing cosine similarity between the aligned words. Specifically, we use the SimAlign 

[106] method for word-level alignment. SimAlign uses static and contextualized embed-

dings without parallel training data to get word alignments. Among the approaches 

explored by SimAlign, we use the Match (mwmf) method, which uses maximum-weight 

maximal matching in the bipartite weighted network formed by the word level similarity 

matrix. Our choice of this approach over the other greedy methods (Itermax and Argmax) 

is motivated by the fact that it finds the global optimum matching, while the other two do 

not. After alignment, we normalize the sum of cosine similarities of RoBERTaLARGE token 

embeddings9 to derive the relevance score. Furthermore, because all rows use the same title,

9We use the average BPE token embeddings as the word embeddings.
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we assign title matching terms zero weight. This chapter refers to this method as SimAlign 

(Match (mwmf)).

7.5.1.3 Using contextualised embeddings

The approach we saw in §7.5.1.2 defines row-hypothesis similarity using word align-

ments. As an alternative, we can directly compute similarities between the contextualised 

sentence embeddings of rows and the hypothesis. We explore two options here.

Sentence transformer: We use Sentence-BERT [23] and its variants [86, 256, 276], which 

use Siamese neural networks [34, 125]. We explore several pre-trained sentence trans-

formers models10 for sentence representation. These models differ in (a) the data used for 

pre-training, (b) the main model type and it size, and (c) the maximum sequence length.

SimCSE: SimCSE [71] uses a contrastive learning to train sentence embeddings in both 

unsupervised and supervised settings. The former is trained to take an input sentence 

and reconstruct it using standard dropout as noise. The latter uses example pairs from 

the MNLI dataset [280] with entailments serving as positive examples and contradiction 

serving as hard negatives for contrastive learning.

We give the row sentences directly to SimCSE to get their embeddings. To avoid 

misleading matches between the hypothesis tokens and those in the premise title, we 

swap the hypothesis title tokens with a single token title from another randomly selected 

table of the same category. We then use the cosine similarity between SimCSE sentence 

embeddings to compute the final relevance score. We again use the sparsity and dynamic 

selection as earlier. In the study, we refer to this method as SimCSE (Hypo-Title-Swap + 

Re-rank + Top-Kτ).

7.5.2 Supervised Evidence Extraction

The supervised evidence extraction procedure consists of three aspects: (a) Dataset 

construction, (b) Label balancing, and (c) Classifier training.

10https://www.sbert.net

https://www.sbert.net
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7.5.2.1 Dataset construction

We use the annotated relevant row data (§7.4) to construct a supervised extraction 

training dataset. Every row in the table, paired with the hypothesis, is associated with a 

binary label signifying whether the row is relevant or not. As before, we use the sentences 

from Better Paragraph Representation (BPR) [] to represent each row.

7.5.2.2 Label balancing

Our annotation, and the perturbation probing analysis of [83]11, show that the number 

of irrelevant rows can be much larger than the relevant ones for a table-hypothesis pair. 

Therefore, if we use all irrelevant rows from tables as negative examples, the resulting 

training set would be imbalanced, with about 6× more irrelevant rows than relevant rows.

We investigate several label balancing strategies by sub-sampling irrelevant rows for 

training. We explore the following schemes: (a) taking all irrelevant rows from the ta-

ble without sub-sampling (on average 6× more irrelevant rows) referred to as Without 

Sample(6×), (b) randomly sampling unrelated rowsin the same proportion as relevant 

rows, referred to as Random Negative(1×), (c) using the unsupervised DRR (Re-Rank + 

Top-Sτ) method to pick the irrelevant rows that are most similar to the hypothesis, in equal 

proportion as the relevant rows, referred to as Hard Negative(1×), and (d) same as (c), 

except picking three times as many irrelevant rows, referred to as Hard Negative(3×)12.

7.5.2.3 Classifier training

We train a relevant-versus-irrelevant row classifier using RoBERTaLARGE’s two sentence 

classifier. We use RoBERTaLARGE because of its superior performance over other models in 

preliminary experiments, and also the fact that it is also used for the NLI classifier.

7.5.3 Natural Language Inference

For the downstream NLI task, the function h is a two-sentence classifier whose inputs 

are TR (the rows selected by g) and the hypothesis H. We use BPR to represent TR as we 

did for the full table T. Since |TR| ≪ |T|, the extraction benefits larger tables (especially in

11Tabular probing using row deletion, row-value updation, row permutation, and row insertion.

12We explored other selection ratios too, take rows with rank till 5×, 2×, and 4×, but discovered that their
performance is equivalent to (a), (b), and (c) respectively.
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α3 set) which exceed the model’s token limit.

7.6 Experimental Evaluation
Our experiments assess the efficacy of evidence extraction (§7.5) and its impact on the 

downstream NLI task by studying the following questions:

1. RQ1: What is the efficacy of unsupervised approaches for evidence extraction?(§7.6.2)

2. RQ2: Is supervision beneficial? Is it helpful to use hard negatives from unsupervised 

approaches for supervised training? (§7.6.2).

3. RQ3: Does evidence extraction enhance the downstream tabular inference task?

(§7.6.3)

7.6.1 Experimental Setup

First, we briefly summarize the models used in our experiments. We investigate both 

unsupervised (§7.5.1) and supervised (§7.5.2) evidence extraction methods. We use only 

the extracted evidence as the premise for the tabular inference task (§7.5.3). We compare 

both tasks against human performance.

As baselines, we use the Word Mover Distance (WMD) of [84] and the original DRR [182] 

with Top-4 extracted evidence rows. For DRR (Re-Rank + Top-Sτ), which uses static em-

beddings, we set the sparsity parameter S = 2, and the dynamic row selection parameter 

τ = 1.0. Our choice of S is based on the observation that in InfoTabS most (92%) instances 

have only one (54%) or two (38%) relevant rows. We set δ to 0.5 for all experiments.

For the Sentence Transformer, we used the paraphrase-mpnet-base v2 model [23] which is 

a pre-trained with the mpnet-base architecture using several existing paraphrase datasets. 

This choice is based on performance on the development set.

Both the supervised and unsupervised SimCSE models use the same parameters as 

DRR (Re-Rank + Top-Kτ). We refer to the supervised and unsupervised variants as SimCSE-

Supervised and SimCSE-Unsupervised respectively.

For the NLI task, we use the BPR representation over extracted evidence TR with the 

RoBERTaLARGE two sentence classification model. We compare the following settings:(a) 

WMD Top-3 from [84], (b) No extraction i.e. using the full premise table with the “para” 

representation from [84], (c) DRR Top-4, (d) DRR (Re-Rank + Top-2(τ=1)) for training, 

development and test sets, (e) training a supervised classifier with a human oracle i.e.
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annotated evidence extraction as discussed in §7.4, and using the best extraction model, 

i.e. supervised evidence extraction with Hard Negative (3×) for the test sets, and (f) the 

human oracle across the training, development, and test sets.

7.6.2 Results of Evidence Extraction

7.6.2.1 Unsupervised evidence extraction

For RQ1, Table 7.3 shows the performance of unsupervised methods. We see that 

the contextual embedding method, SimCSE-Supervised (Hypo-Title-Swap + Re-Rank + 

Top-2(τ=1)), performs the best. Among the static embedding cases, DRR (Re-Rank + Top-

2(τ=1)) sees substantial performance improvement over the original DRR baseline. The 

alignment based approach using SimAlign underperforms, especially on the α1 and α2 test 

sets. However, its performance on the α3 data, with out of domain and longer tables, is 

competitive to other methods.

Overall, the idea of using Top-Sτ, i.e., using the dynamic number of rows prediction and 

Re-Rank (exact-match based re-ranking) is beneficial. Previously used approaches such as 

DRR and WMD have low F1-score, because of poor precision. Using Re-Rank based on 

exact match improves the evidence extraction recall. Furthermore, introducing sparsity 

with Top-Sτ, i.e. considering only the Top-2 rows (S=2) and dynamic row selection (τ = 1) 

substantially enhances evidence extraction precision. Furthermore, the zero weighting 

of title matches using the Hypo-Title-Swap heuristic, benefits contextualized embedding 

models such as SimCSE13.

SimCSE-supervised (Hypo-Title-Swap + Re-Rank + Top-2(τ=1) ) outperforms DRR (Re-

Rank + Top-2(τ=1)) by 4.3% (α1), 2.5% (α2) and 5.4% (α3) absolute score. Since the table 

domains and the NLI reasoning involved for α1 and α2 are similar, so is their evidence 

extraction performance. However, the performance of α3, which contains out-of-domain 

and longer tables (an average of thirteen rows, versus nine rows in α1 and α2) is relatively 

worse. The unsupervised approaches are still 12.69% (α1), 13.49% (α2), and 19.81% (α3) 

behind the human performance, highlighting the challenges of the task.

13For static embedding models, the effect of Hypo-Title-Swap was insignificant
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7.6.2.2 Supervised evidence extraction

For RQ2, Table 7.4 shows the performance of the supervised relevant row extraction 

approaches that use binary classifiers trained with several sampling techniques for irrel-

evant rows. Overall, adding supervision is advantageous14. Furthermore, we observe 

that using the unsupervised DRR technique to extract challenging irrelevant rows, i.e., 

Hard Negative, is more effective than random sampling. Indeed, using random negative 

examples as the irrelevant rows performs the worst. Not sampling (6×) or using only one 

irrelevant row, namely Hard Negative (1×), also underperforms. We see that employing 

moderate sampling, i.e., Hard Negative (3×), performs best across all test sets.

The best supervised model with Hard Negative (3×) sampling improves evidence 

extraction performance by 8.7% (α1), 10.8% (α2), and 4.2% (α3) absolute score over the best 

unsupervised model, namely SimCSE-Supervised (Hypo-Title-Swap + Re-Rank + 

Top-2(τ=1)).15 The human oracle outperforms the best supervised model by 4.13% (α1) and 

2.65% (α2) absolute scores—a smaller gap than the best unsupervised approach. We also 

observe that the supervision does not benefit the α 3 set much, where the performance gap 

to humans is still about 15.95% (only 3.80% improvement over unsupervised approach). 

We suspect this is because of the distributional changes in α3 set noted earlier. This high-

lights directions for future improvement via domain adaptation.

7.6.3 Results of Natural Language Inference

For RQ3, we investigate how using only extracted evidence as a premise impacts the 

performance of the tabular NLI task. Table 7.5 shows the results. Compared to the baseline 

DRR, our unsupervised DRR (Re-Rank + Top-2(τ=1)) performs similarly for α2, worse by 

1.12% on α1, and outperforms by 0.95% on α3.

Using evidence extraction with the best supervised model, Hard Negative (3×), trained 

on human-extracted (Oracle) rows results in 2.68% (α1), 3.93% (α2), and 4.04% (α3) im-

provements against DRR. Furthermore, using human extracted (Oracle) rows for both

14We investigate “How much supervision is adequate?” in §7.7.1.

15Although α2 is adversarial owing to label flipping, rendering the NLI task more difficult, both α1  and α2 
have instances with the same domain tables and hypotheses with similar reasoning types, making the relevant 
row extraction task equally challenging.



121

training and testing sets outperforms all models-based extraction methods. The human

oracle based evidence extraction leads to largest performance improvements of 3.05%

(α1), 4.39% (α2), and 6.67% (α3) over DRR. Overall, these findings indicate that extracting

evidence is beneficial for reasoning in tabular inference task.

Despite using human extracted (Oracle) rows for both training and testing, the NLI

model still falls far behind human reasoning (Human NLI) [84]. This gap exists because,

in addition to extracting evidence, the InfoTabS hypotheses require inference with the

evidence involving common-sense and knowledge, which the NLI component does not

adequately perform.

7.7 Evidence Extraction: Human versus Model
We perform an error analysis of how well our proposed supervised extraction model

(Hard Negative(3x)) performs compared to the human annotators. The model makes two

types of errors: a Type I error occurs when an evidence row is marked as irrelevant,

whereas Type II error occurs when an irrelevant row is marked as evidence. A Type I error

will reduce the model’s precision for the extraction model, whereas a Type II error will

decrease the model’s recall. Type I errors are especially concerning for the downstream

NLI task. Since mislabeled evidence rows will be absent from the extracted premise,

necessary evidence will be omitted, leading to inaccurate entailment labels. On the other

hand, with Type II errors, when an irrelevant row is labeled as evidence, the model has to

deal with from extra noise in the premise. However, all the required evidence remains.

Table 7.6 shows a comparison of the supervised extraction (Hard Negative (3x)) ap-

proach with the ground truth human labels on all the three test sets for both error types. On

the α3 set, Type-I and Type-II errors are substantially higher than α1 and α2. This highlights

the fact that on the α3 set, the model disagrees with with humans the most. Furthermore,

the ratio of Type-II over Type-I errors is much higher for α3.

This indicates that the supervised extraction model marks many irrelevant rows as

evidence (Type-II error) for α3 set. The out-of-domain origin of α3 tables, as well as their

larger size, might be one explanation for this poor performance. Appendix §D.1 provides

several examples of both types of errors.
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7.7.1 Semi-Supervised Evidence Extraction

To investigate this, we use Hard Negative (3x) with RoBERTaLARGE model as our ev-

idence extraction classifier, which is similar to the full supervision method. To simulate

semi-supervision settings, we randomly sample 10%, 20%, 30%, 40%, and 50% example

instances of the train set in an incremental fashion for model training, where we repeat

the random samplings three times. Figures 7.2, 7.3, and 7.4 compare the average F1-score

over three runs on the three test sets α1, α2 and α3 respectively.

We discovered that adding some supervision had advantages over not having any su-

pervision. However, we also find that 20% supervision is adequate for reasonably good

evidence extraction with only < 5% F1-score gap with full supervision. One key issue

we observe is the lack of a visible trend due to significant variation produced by random

data sub-sampling. It would be worthwhile to explore if this volatility could be reduced by

strategic sampling using an unsupervised extraction model, an active learning framework,

and strategic diversity maximizing sampling, which is left as future work.

7.8 Discussion
7.8.1 Why Sequential Prediction?

Our choice of the sequential paradigm is motivated by the observation that it enforces

a causal structure. Of course, a joint or a multi-task model may make better predictions.

However, these models ignore the causal relationship between evidence selection and label

prediction [93, 192]. Ideally, each row is independent and, its relevance to the hypothesis

can be determined on its own. In a joint or a multi-task model that exploits correlations

across rows and the final label, irrelevant rows and the NLI label, can erroneously influence

row selection.

7.8.2 Future Directions

Based on the observations and discussions, we identify the future directions as follows.

(1) Joint Causal Model. To build a joint or a multi-task model that follows the causal rea-

soning structure, significant changes in model architecture are required. Such a model

would first identify important rows and then use them for NLI predictions, but without

risking spurious correlations. (2) How much Supervision is Needed? As evident from our
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experiments, relevant row supervision improves the evidence extraction, especially on α1

and α2 sets compared to unsupervised extraction. But do we need full supervision for

all examples? Is there any lower limit to supervision? We partially answered this ques-

tion in the affirmative by training the evidence extraction model with limited supervision

(semi-supervised setting) in Section 7.7.1, but a deeper analysis is needed to understand

the limits. (3) Improving Zero-shot Domain Performance. As evident from §7.6.2, the evidence

extraction performance of out-of-domain tables in α3 needs further improvements, setting

up a domain adaptation research question as future work. (4) Finally, inspired by [182],

we may be able to add explicit knowledge to improve evidence extraction.

7.9 Conclusion and Future Work
In this chapter, we introduced the problem of Trustworthy Tabular Inference, where a

reasoning model both extracts evidence from a table and predicts an inference label. We

studied a two-stage approach, comprising an evidence extraction and an inference stage.

We explored several unsupervised and supervised strategies for evidence extraction, sev-

eral of which outperformed prior benchmarks. Finally, we showed that by using only

extracted evidence as the premise, our approach outperforms previous baselines on the

downstream tabular inference task.
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Figure 7.1: High level flowchart showing our approach for trustworthy tabular inference.
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Figure 7.2: Extraction performance with limited supervision for α1. All results are average of three
random splits runs.
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Figure 7.3: Extraction performance with limited supervision for α2. All results are average of three
random splits runs.
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Figure 7.4: Extraction performance with limited supervision for α3. All results are average of three
random splits runs.
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Table 7.1: A tabular premise example. The hypotheses H1 is entailed by it, H2 contradicts it, and
H3, H4 are neutral i.e. neither entailed nor contradictory.

Breakfast in America

Released 29 March 1979
Recorded May–December 1978
Studio The Village Recorder (Studio B) in Los Angeles
Genre pop ; art rock ; soft rock
Length 46:06
Label A&M
Producer Peter Henderson, Supertramp

H1: Breakfast in America is a pop album with a length of 46 minutes.

H2: Breakfast in America was released at the end of 1979.

H3: Most of Breakfast in America was recorded in the last month of 1978.

H4: Breakfast in America has 6 tracks.

Table 7.2: Examples (%) for each Fleiss’ Kappa score bucket.

Agreement Range Percentage (%)

Poor < 0 0.27
Slight 0.01 – 0.20 1.61
Fair 0.21 – 0.40 5.69
Moderate 0.41 - 0.60 13.89
Substantial 0.61 - 0.80 22.92
Perfect 0.81 - 1.00 55.61
Overall mean 0.79 s.t.d. 0.23

Table 7.3: F1-scores of the unsupervised evidence extraction methods.

Category Unsupervised Methods α1 α2 α3

Baseline WMD [84] 29.42 30.13 28.23
DRR [182] 33.36 35.72 33.38

Static Embed. DRR (Re-Rank + Top-2(τ=1)) 71.49 73.28 63.41
Alignment SimAlign (Match (mwmf)) 58.98 61.53 66.33

Sentence-Transformer (paraphrase-mpnet-base-v2) 67.37 69.88 63.36
Contextualised SimCSE-Unsupervised (Hypo-Title-Swap + Re-Rank + Top-2(τ=1)) 72.93 70.88 66.33
Embedding SimCSE-Supervised (Hypo-Title-Swap + Re-Rank + Top-2(τ=1)) 75.79 75.74 68.81

Human Oracle [83] 88.62 89.23 88.56
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Table 7.4: F1-scores of supervised evidence extractors.

Sampling (Ratio) α1 α2 α3

Random Negative (1×) 69.42 71.94 54.12
Hard Negative (1×) 80.88 84.37 68.28
No Sampling (6×) 83.76 85.41 71.26
Hard Negative (3×) 84.49 86.58 72.61

Human Oracle 88.62 89.23 88.56

Table 7.5: Tabular NLI performance with the extracted relevant rows as the premise.

Category Evidence Extraction Train Set Evidence Extraction Test Set α1 α2 α3

WMD [84] WMD [84] 70.38 62.55 61.33
Baseline No Extraction [84] No Extraction [84] 74.88 65.55 64.94

DRR [182] DRR [182] 75.78 67.22 64.88
Unsupervised DRR (Re-Rank + Top-2(τ=1)) DRR (Re-Rank + Top-2(τ=1)) 74.66 67.38 65.83
Supervised Oracle Supervised (3× Hard Negative) 77.34 71.15 68.92
Human Oracle Oracle [83] 78.83 71.61 71.55
Human Human NLI [84] Human NLI [84] 84.04 83.88 79.33

Table 7.6: Type-I and Type-II error of best supervised evidence extraction model.

Test Set Type-I Type-II Ratio (II/I) Total

α1 312 430 1.38 742
α2 286 358 1.25 644
α3 508 1053 2.07 1561



CHAPTER 8

TABULAR DATA AUGMENTATION

Adapted from D. Kumar, V. Gupta, S. Sharma, S. Zhang, Realistic data augmentation

framework for enhancing tabular reasoning, in Findings of the Association for Computational

Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, Asso-

ciation for Computational Linguistics, pp. 4411–4429.

Human-generated datasets such as InfoTabS (Chapter 3) are limited in scale and thus

insufficient for learning with large language models [51, 158]. Since curating these datasets

requires expertise, huge annotation time, and expense, they cannot be scaled. Further-

more, in Chapter 3, we show that these datasets often suffer from annotation bias and

spurious correlation problem [75, 87, 202].

In contrast, automatically generated data lacks diversity and have naive reasoning

aspects. Recently, use of large language generation model [137, 208, 210] is also proposed

for data generation [173, 190, 306]. Despite substantial improvement, these generation

approaches still lack factuality, i.e., suffer hallucination, have poor facts coverage, and

also suffer from token repetition (refer to Section 8.5 analysis). Recently, [25] shows that

automatic tabular NLG frameworks cannot produce logical statements and provide only

surface reasoning.

In this chapter, we address the above shortcomings, by utilising a semi-automatic frame-

work that exploits the patterns in tabular structure for hypothesis generation. Specifically,

this framework generates hypothesis templates transferable to similar tables since tables

with similar categories, e.g., two athlete tables in Wikipedia, will share many common

attributes. In Table 8.1 the premise table key attributes such as “Born”, “Died”, “Children”

will soon be shared across other tables from the “Person” category. One can generate

a template for tables in the Person category, such as <Person Name> died before/after

<Died:Year>. This template could be used to generate sentences as shown in Table 8.1
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hypothesis H1 and H1C. Furthermore, humans can utilize cell types (e.g., Date, Boolean)

for generation templates. Recently, it has been shown that training on counterfactual data

enhances model robustness [177, 212, 275]. Therefore, we also utilize the overlapping key

pattern to create counterfactual tables. The complexity and diversity of the templates can

be enforced via human annotators. Additionally, one can further enhance the diversity by

automatic/manual paraphrasing [45] of the template or generated sentences.

To show the effectiveness of our proposed framework, we conduct a case study with

InfoTabS dataset. InfoTabS is an entity-centric dataset for tabular inference, as shown in

example Table 8.1. We extend the InfoTabS data (25K table-hypothesis pair) by creating

Auto-TNLI, which consists of 1,478,662 table-hypothesis pairs derived from 660 human

written templates based on 134 unique table keys from 10,182 tables. For experiments,

we utilize Auto-TNLI in three ways (a.) as a standalone tabular inference dataset for

benchmarking, (b.) as a potential augmentation dataset to enhance tabular reasoning on

InfoTabS, i.e., the human-created data (c.) as evaluation set to assess model reasoning

ability. We show that Auto-TNLI is an effective data for benchmarking and data augmen-

tation, especially in a limited supervision setting. Thus, this semi-automatic generation

methodology has the potential to provide the best of both worlds (automatic and human

generation). 1

8.1 Contributions
We make the following contributions in this chapter:

• We propose a semi-automatic framework that exploits the patterns in tabular struc-

ture for hypothesis generation.

• We apply this framework to extend the InfoTabS [84] dataset and create a large-scale

human-like synthetic data Auto-TNLI that contains counterfactual entity-based ta-

bles.

• We conduct intensive experiments using Auto-TNLI and demonstrate it helps bench-

mark and data augmentation, especially in a limited supervision setting.

This work was published at EMNLP 2022 Findings as [129]. We also constructed a

framework for semi-automatically recasting existing tabular data to build tabular NLI

1The dataset and associated scripts, are available at https://autotnli.github.io.

https://autotnli.github.io
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instances from five database style tabular datasets that were initially intended for tasks

like table2text creation, tabular Q/A, and semantic parsing. We demonstrate that recasted

data could be used as evaluation benchmarks as well as augmentation data to enhance

performance on tabular NLI tasks. Furthermore, we investigate the effectiveness of models

trained on recasted data in the zero-shot scenario, and analyse trends in performance

across different recasted datasets types. This work was also published at EMNLP 2022

Finding as [107].

8.2 Background
Synthetic creation of dataset has long been explored [119, 177, 225, 284]. For tabular

NLI in particular, the datasets can be categorized into 1) Manually created datasets [84]

with manually creates both hypothesis and premise, [26] manually creates the hypothesis

while premise is automatically generated 2) Synthetically created semi-automatically gen-

erated datasets which completely automate data generation requires manual designing

table-dependent context-free grammar (CFG) [58], or require logical forms to be annotated

[25, 29, 177]. Several works such as [78, 87, 179, 187, 202, 266] have shown that models

exploit spurious patterns in data. Similar to [84, 184, 298] authors investigate impacts

of artifacts in dataset by creating adversarial test sets. However, semi-automatic systems

requiring a CFG or logical forms contains reasoning which is often limited to certain types.

Creating sentences that contain other reasonings (like lexical reasoning, knowledge, and

common sense reasoning) is challenging using CFG and logical forms. Our work requires

subject matter experts to create entity specific templates for each category which leads to

creating sentences with multiple reasonings as well as complex reasonings.

8.3 Proposed Framework
Our framework includes four main components: (a.) Hypothesis Template Creation,

(b.) Rational Counterfactual Table Creation, (c.) Paraphrasing of Premise Tables, and (d.) Au-

tomatic Table-Hypothesis Generation. Figure 8.1 shows the proposed framework of our

approach.
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8.3.1 Hypothesis Template Creation

For a particular category of tables (e.g., movie), the row attributes (i.e. keys) are mostly 

overlapping across all tables (e.g., Length, Producer, Director, and others). Therefore, this 

consistency across table benefits in writing table category specific key-based rules to create 

logical hypothesis sentences. We create such key-based rules for the following reason-

ing types: (a.) Temporal Reasoning, (b.) Numerical Reasoning, (c.) Spatial Reasoning,

(d.) Common Sense Reasoning. Table 8.2 provides examples of logical rules used to create 

templates. We denote the category of a table as Category and the table row keys of as 

<Key>. In addition, each template is paraphrased to enhance lexical diversity.

Frequently, these key-based reasoning rules generalize effectively across several cat-

egories. For example, the temporal reasoning rule based on the date-time type could 

be minimally modified to work for < Release Date>  f category Movies tables, as well as 

the <Established Date> of category University tables, in addition to the <Born> of 

category Person in Table 8.2. Additionally, reasoning rules can be expanded to incorporate 

multi-row entities from the same table’s data, as illustrated in Table 8.2 for the numer-

ical reasoning type. Other examples for the same are ”The elevation range of <City> 

is <HighestElevation> − <LowestElevation>” for category City table, ”<SportName> was 

held at <location> on <date>” for Sports category.

8.3.2 Rational Counterfactual Table Creation

We also construct counterfactual tables, as illustrated in Table 8.1, in which the values 

corresponding to the original table’s keys are altered. This counterfactual table contains 

non-factual unreal information but is consistent, i.e., the table facts are not self contradic-

tory. Language models trained on such counterfactual instances exhibit greater robustness 

[83, 177, 212, 275] and prevent the model from over-fitting its pre-learned knowledge. Ben-

efiting model in grounding and examining the premise evidence as opposed to employing 

spurious correlation. To create counterfactual table, we modify an original table with k 

keys. For a given category, these k keys constitute a subset of the n possible unique keys 

(n >= k) for that category.

To construct a counterfactual table, we modify the original table in one or more of the 

following ways: (a.) keep the row as it without any change, (b.) adding new value to an
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existing key, (c.) substituting the existing key-value with counter-factual data, (d.) deleting

a particular key-value pair from the table, (e.) and add a missing new keys (i.e. a key

from (n− k) ), (f.) and adding a missing key row to the table. For creating counterfactual

tables, for each row of existing, a subset of operation is selected at a random each with a

pre-decided probability p (a hyper-parameter).

While creating these tables, we impose an essential key-specific constraints to ensure

logical rational in the generated sentences. E.g. in the example Table 8.1, for the counterfac-

tual table of Janet Leigh (Counterfactual), the <Born> is kept similar to original of Janet Leigh

(Original), whereas <Died> has been substituted for another Person table, while ensuring

the constraint Born Date < Death Date i.e. Jan 13, 1994 (Died Date of Counterfactual

Table) is after July 6, 1927 (Born Date of Counterfactual Table)). Without the following the

constraint that Born Date < Death Date, the table with become rationally incorrect or

self contradictory.

8.3.3 Paraphrasing of Premise Tables

Lack of linguistic variety is a significant concern with grammar-based data generating

methods. Therefore, we employ both automated and human paraphrase of premise tables

to address diversity problem. For each key for of a given category, we create at least

three to five simple paraphrased sentences of the key-specific template. E.g. for <Alma

Mater> from Person, possible paraphrases can be ”<PersonName> earned his degree from

<AlmaMater>”, ”<PersonName> is a graduate of <AlmaMater>”, and ”<AlmaMater> is

a alma mater of <PersonName>”. We observe that paraphrasing considerably increases

the variability across instances.

8.3.4 Automatic Table-Hypothesis Generation

Once the templates are constructed as discussed in §8.3.1, they can be used to auto-

matically fill in the blanks from the entries of the considered tables and create logically

rational hypothesis sentences. To create contradictory sentences, we randomly select a

value from a collection of key values shared by all tables to fill in the blanks. This replace-

ment ensures that the key-specific constraints, such as the key-value type, are adhered

to. Furthermore, we ensure that similar template with minimal token alteration is used to

create entail contradict pair. This way of creating entail and contradiction statement pairs
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with lexically overlapping tokens ensure that, future model trained on such data won’t

adhere spurious correlation from the tabular NLI data i.e. minimising the hypothesis bias

problem [202]. For example, for movie ”Ironman” movie with rows ”Budget: $140 million”

and ”Box−office: $585.8 million”, using the template <Movie> was a ”hit if <Box Office>

− <Budget> else flop” from example Table 8.2, one can generate hypothesis entail: ”The

movie Ironman was a hit” and contradict: ”The movie Ironman was a flop”.

8.4 The Auto-TNLI Dataset
We apply our framework as described in §8.3 on an entity specific tabular inference

dataset InfoTabS to construct Auto-TNLI. InfoTabS [84] consists of pairs of NLI instances:

a hypothesis statement grounded and inferred on premise table is extracted from Wikipedia

Infobox table across multiple diverse categories. We construct the Auto-TNLI dataset

from a subset of the InfoTabS dataset (11 out of 13 total categories), which includes the

original table plus five counterfactual tables corresponding to each original table, for a

total of 10, 182 tables. We retrieve 134 keys and 660 templates, which we utilize to generate

1, 478, 662 sentences. However, unlike InfoTabS, which contains 3 labels, ENTAIL, CON-

TRADICT and NEUTRAL, Auto-TNLI contains only two labels ENTAIL and CONTRADICT.

As previously reported in the original InfoTabS paper (Chapter 3) by [84], annota-

tors are biased towards specific keys over others. For example, for the category Com-

pany, annotators would create more sentences for the key <Founded by> than for the key

<Website>, resulting in an inherent hypothesis bias in the dataset. While creating the

templates for Auto-TNLI, we ensure that each key has a minimum of two hypotheses

and a minimum of three (>3) premise paraphrases, which helps mitigate hypothesis bias.

To address the inference class imbalance labeling issue, we construct approximately 1:1

ENTAIL to CONTRADICT the hypothesis.

We observe that most additional human labor required to build such sentences is spent

on the set of key-specific rules and constraints that ensure the sentences are grammatically

accurate. The counter-factual tabular data is logically consistent, i.e., not self-contradictory.

Table 8.3 details the number of unique keys, the minimum/maximum/average number of

keys, and the total number of sentences per table in Auto-TNLI. As can be observed, the

system generates a large amount of Auto-TNLI data compared to limited InfoTabS while
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using only a few human-constructed templates with key-specific rules and constraints.

We have chosen InfoTabS as it has three evaluation sets α1, α2, and α3, in addition to

the regular training and development sets. The α1 set is lexically and topic-wise similar to

the train set, and in α2 the hypothesis is lexically adversarial to the train set. And in α3 the

tables are from topics not in the train set. Moreover, it has multiple reasoning types such

as multi-row reasoning, entity type, negation, knowledge & common sense, etc. InfoTabS

has all three labels ENTAIL, NEUTRAL, and CONTRADICT compared to just two labels in

other datasets such as TABFACT.

8.4.1 Human Verification

To evaluate the quality and correctness of our data, we requested one of our human

annotators (expert NLP Ph.D. Grad student) to assign a label to the generated hypothesis

and select a score from 1 to 5 for the grammar and complexity of the sentences. The gram-

mar score reflects how meaningful and lexically accurate the data is, and the complexity

score indicates how difficult it is to label the hypothesis correctly. This was done for about

1300 premise-hypothesis pairs from Auto-TNLI.

Analysis: As observed in Table 8.4, humans marked 99.5% of the data as correctly

labeled and gave an average score of about 4.89 out of 5 for the grammatical accuracy of

the sentences. The sentences in this data also received an average complexity score of 3.64

out of 5.

8.4.2 Reasoning for Auto-TNLI

Our annotators classified all the distinct2 templates from Auto-TNLI into 14 reasoning

types present in InfoTabS. Table 8.5 shows the individual reasoning type distribution

across each category. The distribution statistics of reasoning types across each category

is shown in Table 8.6. Table 8.7 shows that summary statistics across various reasoning

types. Figure 8.2 gives distribution of extend of multiple reasoning in each individual

examples.

Analysis: As we observe in Table 8.5 the cumulative frequency of reasoning types

across each category is highest for Person followed by University and City and the average

frequency of reasoning types across category is City followed by Person and Paint. In Table

2Templates for Provost and President are very similar so we don’t consider them to be separate templates.
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8.7 we see that the cumulative frequency of reasoning types across all categories is highest

for simple lookup followed by lexical and numerical which have the same frequency.

8.5 Automatic Data Generation
Using GPT-J-6B, we generate 9–11 sentences per category. In total, we generated 110

sentences for 11 categories. We then classified each sentence into one of the following five

classes: (a.) Correct - Both sentence and labels are correct. (b.) Factual error - Sentence is

meaningful, but the label assigned to it is wrong. (c.) Overfit error - The same sentence as

seen previously is generated without any lexical changes. (d.) Hallucination error - When

knowledge from outside the tables provided is used to make a sentence. (e.) Repetition

error - The same sentence is generated several times.

Analysis: As observed in Figure 8.3, out of all the 110 automatically generated hypoth-

esis only 32.7% were Correct i.e. sentences were meaningful and the labels assigned to

them are correct. Among the rest, about 52% had Factual errors in them and around 35%

were Hallucination errors. This further demonstrates that a semi-automatic approach, such

as ours, is preferable, as fully automated generating techniques are not reliable.

8.6 Experiments and Analysis
Overall, we address the following two research questions through our experiments:

RQ1: (a) Taking Auto-TNLI as an evaluation set, how challenging is the TNLI task? (b) If

fine-tuning on Auto-TNLI beneficial?

RQ2: (a) Is it beneficial to use Auto-TNLI as data augmentation for the TNLI task? (b) If

so, will it also be useful in little supervision scenario?

8.6.1 Experiment Settings

We use RoBERTaBASE [158] (12-layer, 768-hidden, 12-heads, 125M parameters) and ALBERT-

BASE [134] (12-layer, 768-hidden, 12-heads, 12M parameters) as our model for all of our

experiments3. [182] shows data augmentation techniques that uses MNLI data for pre-

training acts as implicit knowledge and enhances the model performance for InfoTabS.

3Due to the large scale of the Auto-TNLI data, we favour BASE over LARGE models for conducting
efficient experiments.
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Therefore, we also explore implicit knowledge addition via data augmentation. In partic-

ular, we explored the following models: (a) RoBERTaBASE fine-tuned using the Auto-TNLI

dataset (b) RoBERTaBASE, fine-tuned on the MNLI dataset and the Auto-TNLI dataset

(MNLI + Auto-TNLI). Additionally, we also explore performance with RoBERTaBASE model

fine-tuned sequential on all three MNLI, Auto-TNLI and InfoTabS dataset. Due to limited

space, we report all ALBERT 4 findings in Appendix E.

8.6.2 Using Auto-TNLI as TNLI Dataset

In this section, we assess how challenging our Auto-TNLI is compared to the InfoTabS

datasets (i.e., RQ1).

8.6.2.1 Data splits

We first construct several train-dev-test splits of Auto-TNLI such that: (a) splits have

table from different domains (categories)5 (b) splits have unique table row-keys, (c) premises

in splits are lexically diverse. For the category-wise splits, we explore two ways (a) we

divided categories randomly into train-dev-test. (b) we construct the splits after doing a

cross-category performance analysis. In the cross-category analysis, we get all premise-

hypothesis pairs generated from tables in one category (for example person) and train our

model on this data. After this we test on premise-hypothesis pairs generated from all other

categories (for example : city, movie etc.) one-by-one. We keep the difficult categories for

the model to solve in the test set. This is accomplished by counting the number of times

an category’s accuracy falls below a specific threshold6 and then selecting the entities with

the highest frequency. We kept book, paint, sports & events, food & drinks, album in train-set,

person, movie, city in dev-set and organization, festival, university in test-set.

For key-wise split, we explore two approaches (a) we divide the keys randomly into

train-dev-test. (b) we decided splits based on the associated keys-values named entities

type namely - person, person type, skill, organization, quantity, date time, location, event, url,

4Experiments on the development set showed that RoBERTaBASE outperforms other pre-trained language
models. BERTBASE and ALBERTBASE reached an accuracy of 63% and 70.4% respectively

5by table domain/categories we refer to table entity types e.g. ”Person”, ”Album”, and others.

6We choose the threshold as 80%.
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product after cross-entity performance analysis.. Similar to cross-category analysis above,

here we get all premise-hypothesis pairs corresponding to keys in a single entity, for exam-

ple let’s say we choose the entity person and it includes the keys written by, mayor, president

etc. then we get all premise-hypothesis pairs corresponding to these keys and train on

them. After this we test on premise-hypothesis pairs corresponding to all other entities

(for example : persontype, skill) one-by-one. We select the entities that are challenging for

the model in the test set. This is accomplished by counting the number of times an entity’s

accuracy falls below a specific threshold4 and then selecting the entities with the highest

frequency. We kept the url, event, person type, skill, product in train-set, quantity, other, person

in dev-set and date time, organization, location in test-set.

Finally, for the lexical diversity, we split via paraphrasing premise. Here too, we ex-

plore two different strategies (a) premises in train, dev, and test are not paraphrased, i.e.,

have similar templates. (b) premises in train, dev, and test are lexically paraphrased i.e.

have distinct templates.

8.6.2.2 Using Auto-TNLI only for evaluation (RQ1a)

We first explore how challenging is Auto-TNLI is used as an evaluation benchmark

dataset. To explore this, we compare the performance of pre-trained RoBERTaBASE model

in four distinct settings, as follows (a.) without (w/o) fine-tuning, (b.) fine-tuned with

InfoTabS, (c.) fine-tuned with MNLI, (d.) fine-tuned over both MNLI and InfoTabS in

order and and evaluate it on Auto-TNLI test-sets splits. For finetuning on MNLI and

InfoTabS dataset, we only consider the ENTAIL and CONTRADICT while excluding the

NEUTRAL label instances for training purposes.

Analysis: Table 8.8 shows a comparison of accuracy across all augmentation settings.

The best is obtained when using both MNLI and InfoTabS for training. In the cases where

we have used some fine-tuning with MNLI or InfoTabS we observed an average accu-

racy of 67.5%. Comparing this with zero-shot accuracy for InfoTabS where we observed

accuracy of 58.9%, we can see that semi-automatically generated data is still challenging.
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8.6.2.3 Using Auto-TNLI for both training,
and evaluation (RQ1b)

Next, we explore if providing supervision improves the performance on the Auto-

TNLI evaluation sets. To explore this, we compare pre-trained RoBERTaBASE model per-

formance in two distinct settings, where we fine-tune on train set (a.) of Auto-TNLI, (b.) of

both MNLI and Auto-TNLI in order and evaluate on Auto-TNLI test-sets. Here too, we

exclude the NEUTRAL label instances from MNLI.

Analysis: Table 8.8 shows a performance (accuracy) comparison across all augmenta-

tion settings. For all splits except paraphrasing, RoBERTaBASE achieves an average 80%

accuracy. It shows that our semi-automated dataset Auto-TNLI is as challenging as In-

foTabS [84], which has an average accuracy of 70% across all splits and is manually

human-generated and is one-tenth the size of Auto-TNLI. Pre-finetuning with MNLI as

augmented data (i.e., implicit knowledge) only improves the performance by 2%. Table

8.9 shows the category wise analysis of the results. Identical findings were also seen with

ALBERTBASE model, c.f. Appendix E.

8.6.2.4 Cross-category analysis

We analyze how the semi-automatic data created performs across categories, i.e., train-

ing on one category and evaluating on the rest. This gave an idea of how training on data

from one category generalizes over the rest. In Table 8.10, we have shown the accuracy

when our model is trained on the categories written in rows and evaluated on the cate-

gories given in the columns.

Analysis: Here we observed that except some categories such as Sports & Events, Album

and City the cross category accuracy is pretty high among the rest. Album seems to be quite

a hard category with all categories giving a low cross-category accuracy when evaluated

on it. City gave a challenging test set when trained on Sport & Events. University is the

toughest test set for Album. When used as a test-set, City gave the least accuracy against

Sports & Events, Album gives the least accuracy against Paint, University gave the least

accuracy against Sports & Events and for the rest Album gave the least accuracy.



139

7We take five counterfactual tables for each original table.

8.6.2.5 Cross-entity analysis

We analyze how the semi-automatic data created performs across entities, i.e., training 

on one entity and evaluating on the rest. This gave an idea of how training on data from 

one category generalizes over the rest. In Table 8.11, we have shown the accuracy when 

our model is trained on the entity written in rows and evaluated on the entities given in 

the columns.

Analysis: Here we observed that Date & Time is quite a tough test-set for most entities. 

Quantity is a tough test-set for Skill and URL. For Skill and Person Type are tough test-sets for 

Location and Quantity respectively. When used as a test-set, URL gave the lowest accuracy 

against Person Type, Quantity gave the lowest accuracy against URL and for the rest the 

URL gave the least accuracy.

8.6.3 Using Auto-TNLI for Data Augmentation

We explore if Auto-TNLI can be used as an augmentation dataset for InfoTabS (i.e. 

RQ2). Since InfoTabS include all three ENTAIL, NEUTRAL and CONTRADICT labels, where 

as Auto-TNLI include only ENTAIL and CONTRADICT labels, we explore the inference task 

as a two-stage classification problem. In first stage, we train a RoBERTaBASE classification 

model to predicts whether a hypothesis is NEUTRAL versus NON-NEUTRAL (either EN-

TAIL or CONTRADICT). In second stage, we fine-tune a separate RoBERTaBASE model to 

further classify the NON-NEUTRAL prediction instances from stage one into ENTAIL or 

CONTRADICT label. Figure 8.4 illustrates the two-stage classification approach.

8.6.3.1 Comparison models

For first-stage we consider two training strategies: (a.) only train on InfoTabS, (b.) pre-

finetune on both MNLI followed by training on InfoTabS. We consider multiple data 

augmentation technique for second stage training where we augment (a.) Orig: the Auto-

TNLI without counterfactual table instances, (b.) Orig +Count: Auto-TNLI including 

counterfactual table instances7, (c.) MNLI +Orig: both MNLI and Auto-TNLI without 

counterfactual table instances, (d.) MNLI +Orig +Count: both MNLI and Auto-TNLI 

including counterfactual table instances. Additionally, we compare all above methods
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with (e.) No Aug i.e. the approach where we do not augment any additional data.

8.6.3.2 Evaluation sets

We utilize the InfoTabS test sets, which include all three inference labels for evalua-

tion. In addition to standard development and a test split (α1), InfoTabS also has two

adversarial test splits, namely α2 and α3. E.g. in the example Table 8.1 if hypothesis

sentence Janet Leigh was born before 1940 is ENTAIL, then in α2 after perturbation the

instance became Janet Leigh was born after 1940 with label as CONTRADICT. The test set

α3 is a zero-shot evaluation set consisting of premise tables from different domains with

minimal key overlaps with the training set premise tables. To better handle α2 and α3

test-sets, we include a counterfactual table and hypothesis in Auto-TNLI.

8.6.3.3 Supervision scenarios

We analyse the effect of using Auto-TNLI as augmentation data for InfoTabS in two

setting (a) Complete Supervision where we use complete InfoTabS training set for final

fine-tuning (b) Limited Supervision where we use limited InfoTabS supervision for sec-

ond stages. We explore using 0% (i.e. no fine-tune), 5%, 15% and 25% of InfoTabS training

set for final fine-tuning.

8.6.4 Complete InfoTabS Supervision (RQ2a)

Table 8.12 shows a comparison of accuracy across all augmentation settings. In the

first case, when the first stage is only trained on InfoTabS, we observe an improvement of

1.6% and 1.2% percentage in α1 and α3 test-set through direct Auto-TNLI data augmenta-

tion base pre-finetuning (Orig+Count) in comparison with no augmentation i.e. direct

InfoTabS fine-tuning. We didn’t see any substantial improvement in α2 performance.

Fine-tuning with MNLI followed by Auto-TNLI (with counterfactual tables) further im-

prove the performance by 0.6%, 2.0%, and 0.45% on α1, α2, and α3 respectively.

For second case, when the first stage is trained on both MNLI, followed by InfoTabS,

we observe an improvement of 1.60% and 0.67% percentage in α1 and α3 test-set through

direct Auto-TNLI data augmentation base pre-finetuning (Orig+Count) in comparison

with no augmentation i.e. direct InfoTabS fine-tuning. Here too, we didn’t see any sub-

stantial improvement in α2 performance. Finetuning with MNLI followed by Auto-TNLI
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(with counterfactual tables) further improve the performance by 1.44%, 1.94%, and 0.83%

on α1, α2 and α3 respectively. Identical findings w ere a lso s een w ith A L BERTBASE model, 

c.f. Appendix E.

8.6.4.1 Ablation analysis - independent 
stage-1 and stage-2 performance

8.6.6 Performance across Different Reasoning Types

 We take the 160 pairs from development and α3 test sets each, from InfoTabS, that 

have been categorised into 14 reasoning types to assess the impact of pre-training on

 We also did an ablation study to access the performance of individual RoBERTaBASE 

models of both stages. Table 8.13 shows the performance for stage one classifier i.e. NEU-

TRAL versus NON-NEUTRAL. We observe that adding MNLI data for augmentation sub-

stantially improves the performance by 1.89%, 2.28%, and 2.05% for α1, α2, and α3, respec-

tively.

Table 8.14 shows the comparison between all settings of stage-2. In stage-2 adding 

counterfactual tables improve the performance by 2.75% and 1.42% in α2 and α3 respec-

tively. We didn’t see any substantial improvement in α2 performance. If we pre-finetune 

further with MNLI along with Auto-TNLI we further get an improvement of 5.42%, 3.33%

and 2% in α1, α2, and α3 respectively. Identical findings were also seen with ALBERTBASE 

model, c.f. Appendix E.

8.6.5 Consistency Analysis across Augmentation

We perform a consistency analysis on three setting, namely No Augmentation, Orig + 

Count and MNLI + Orig + Count to obtain a better estimate of where pre-training with 

Auto-TNLI helps improve performance in InfoTabS. In Figures 8.5, 8.6, 8.7, and 8.8 we 

have shown the consistency graphs on the 3 settings.

Analysis: We observe in Figures 8.5, 8.6, 8.7, and 8.8 that the model is more prone to 

classifying CONTRADICT as ENTAIL than the other way around in α1 set and there is a 

significant improvement after pretraining with Auto-TNLI.For α2 and α3 sets we can see a 

considerable improvement in ENTAIL being classified as CONTRADICT from pretraining on 

Auto-TNLI. Pretraining on Auto-TNLI always results in improvements overall.
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various reasoning types, namely (a) numerical reasoning, (b) co-reference, (c) multi-row

reasoning, (d) knowledge and common sense, (e) simple lookup, (f) negation, (g) lexical

reasoning, (h) entity type, (i) named entities, (j) temporal reasoning, (k) subjective/out-

of-table, (l) quantification, (m) syntactic alternations, and (n) ellipsis. The frequency of

ENTAIL and CONTRADICT pairs being correctly classified is shown in Table 8.15 and Table

8.16 respectively.

Analysis: In Table 8.15 we observe that 9 out of 14 times in development and 12 out of

14 times in α3-test sets MNLI + Orig + Count perform best. In Table 8.16 we observe that

10 out of 14 times in development set Orig + Count perform best.

8.7 Limited InfoTabS Supervision (RQ2b)
In this setting, we analyse the effect of limiting InfoTabS supervision for the second

stage i.e. ENTAIL versus CONTRADICT. We explore using 0% (i.e. no fine-tune), 5%, 15%

and 25% of InfoTabS training set for fine-tuning. Table 8.17 shows the performance for

every augmentation settings. The table report average result over three random samples

from Auto-TNLI. We observe that augmenting with Auto-TNLI improve performance

for all percentages. Furthermore, the improvement is much more substantial for lower

than higher percentages. Here too, the best performance are obtained via fine-tuning with

MNLI followed by Auto-TNLI for all percentages. In Table 8.18 we have also shown the

accuracy for the first stage of the 2-stage classifier in the limited supervision setting with

and w/o MNLI augmentation.

Effects of Auto-TNLI Augmentation: Since Auto-TNLI only contains ENTAIL and

CONTRADICT labels, to check how pretraining with Auto-TNLI affects the results in the

limited supervision setting we had to use the 2-stage classifier where (a.) No Augmen-

tation in first stage. (b.) Augmentation with MNLI in first stage. In Tables 8.19 and

8.20, we present the combined stage performance on limited supervision both w and

w/o MNLI pre-training. The first stage classifier is again used to classify NEUTRAL vs.

NON-NEUTRAL.

Analysis: As we can see in both Table 8.19 and Table 8.20 that the best is obtained by

similar models in either case, with the only difference being that augmenting the first stage

with MNLI helps improve the accuracy across all cases.
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8.8 Discussion
8.8.1 Why Counterfactual Table Generation?

Tabular dataset is inherently semi-structured. Therefore, each category table has a spe-

cific set of keys. This enables us to create key-specific templates based on the entity-types of

keys [182], which could be applied to millions of tables of a given category. Furthermore,

as explained in §8.4, the templates also generalize across keys with similar value types

across categories. All this is only possible due to the semi-structured nature of tabular

data. Using counterfactual tables equips the model with more linguistically comparable.

But oppositely labeled data to learn from, guaranteeing that the model can learn beyond

the superficial textual artifacts and so becomes more resilient as shown by [119, 212]. As

a result, when counterfactual data is included in the Auto-TNLI, we observe performance

improvement throughout all experimental settings. This learning is further verified by the

findings for better gains in α2, which comprises instances of linguistically comparable but

oppositely labeled data instances.

8.8.2 Why Semi-Automatic Approach?

By examining the two diametrically opposed frameworks, namely a Human and an

Automatic Annotation Framework, we may see many issues with both. Manually created

data is prohibitively expensive and demands much human effort, limiting the ability to de-

velop large-scale databases. Additionally, humans have a propensity to establish artificial

patterns when manually creating a dataset, such as not giving all keys the same importance

(explained in §8.4). While autonomous data generation is computationally efficient, it has

many limitations. e.g., the inability to generate linguistically complex sentences and the

difficulty of incorporating reasoning into the dataset. Because most deep learning models

perform better with more data, producing large-scale datasets at a reasonable cost is critical

while retaining data quality. With this in mind, we presented a ”semi-automatic” archi-

tecture with the following benefits: (a.) It simplifies the creation of large-scale datasets.

Using only 660 templates, we can generate 1,478,662 premise-hypothesis pairings from

around 10,182 tables. (b.) The framework may be reused with additional tabular data as

long as the structure is preserved. (c.) It enables the creation of linguistically and lexically

diverse datasets. (d.) As shown in §8.4, hypothesis bias can be minimized by establishing
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an adequate number of diverse templates for all keys of each category. (e.) The premises

have been paraphrased in three ways to bring the required lexical diversity.

8.9 Conclusion
We introduced a semi-automatic framework for generating data from tabular data. Us-

ing a template-based approach, we generate Auto-TNLI. We utilized Auto-TNLI for both

TNLI evaluation and data augmentation. Our experiments demonstrate the effectiveness

of Auto-TNLI and, by implication, our framework, especially for adversarial settings. For

the future work, we aim to involve the creation of additional lexically varied and robust

datasets and investigate whether the addition of neutrals could improve these datasets.

8.10 Limitations
This work has focused on entity tables, where the tabular structure and knowledge pat-

terns are straightforward. Nevertheless, our templates technique does not generate maybe

true/maybe false statements, i.e., neutral statements, as they need enhanced common

sense (e.g., subjective usage) and unmentioned entity knowledge, i.e., information beyond

the premise table. It is unknown how to generate good templates automatically, such

as using neural generation methods rather than leveraging expert domain knowledge.

Also, how these manually curated templates work when applied with more complicated

tables like nested and hierarchical tables is under-explored. Theoretically, we can generate

an infinite number of premise-hypothesis pairs, but the marginal utility might hurt the

notion. Additionally, the zero-shot capabilities for out-of-domain tables are limited by the

presumption that tables in similar categories resemble keys.
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Figure 8.1: Our proposed framework. Yellow represents modified values in the counterfactual
tables.

Figure 8.2: Cumulative frequency of templates across reasoning types in Auto-TNLI.
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Figure 8.3: Percentage chart for automatic data generation correct and error labels.

Figure 8.4: Two stage classification approach.

Figure 8.5: development consistency graphs. From top to bottom the values represent Red - No
Augmentation, Blue - Orig+Counter, Green - MNLI+Orig+Counter.
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Figure 8.6: α1 consistency graphs. Notation same as Figure 8.5.

Figure 8.7: α2 consistency graphs. Notation same as Figure 8.5.

Figure 8.8: α3 consistency graphs. Notations same as Figure 8.5.
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Table 8.1: A example of an original and counterfactual table from the ”Person” category. Here, we
illustrate how multiple operations can be used to alter different keys. In addition, we have shown
how the labels (E - Entail, C - Contradict) for a specific hypothesis can alter. In the “Janet Leigh”
example table, the first column represents the keys (e.g. Born; Died) and the second column has
the relevant values (e.g. July 6,1927; October 3, 2004 etc).

Janet Leigh (Original) Janet Leigh (Counter-Factual)
Born July 6, 1927 Born July 6, 1927
Died October 3, 2004 Died January 13, 1994
Children Kelly Curtis; Jamie Lee Curtis Children Kelly Curtis
Alma Mater Stanford University Alma Mater University of California
Occupation None Occupation Scientist
H1: Janet Leigh was born before 1940. E H1C: Janet Leigh was born after 1915. E
H2: The age of Janet Leigh is more than 70. E H2C: The age of Janet Leigh is more than 70. C
H3: Janet Leigh has 1 children C H3C: Janet Leigh has more than 2 children. C
H4: Janet Leigh graduated from Stanford E H4C: Janet Leigh graduated from Stanford C

Table 8.2: Rules and constraints are classified into specific areas of reasoning, as indicated in the
table. A few examples of rules and constraints have been provided for each category. <Died:Year>
indicates that the year value is extracted from <Died> , whereas <Release1:Location> indicates that
the location is extracted from a single key-value pair in <Release>. KCS denote knowledge and
common sense reasoning in this context.

Reasoning Category Template-Rules Table-Constraints

Temporal Person <Person> was born in a leap year. Born Date ≤
<Person> died before/after <Died:Year> Death Date

Numerical Movie <Movie> was a ”hit if <Box Office> − <Budget> else flop” Budget ≥ 0
<Movie> had a Box Office collection of <BoxOffice>

Spatial Movie <Movie> was released in <Release1:Loc>, ”X” months Release1:Location ̸=
before/after <Release2:Location> Release2:Location

KCS City The governing of <City> is supervised by <Mayor> Lowest Elevation ≤
<Mayor> is an important local leader of <City> Highest Elevation

Table 8.3: Auto-TNLI statistics.

Statistic Metric Numbers
Number of Unique Keys 134
Average number of keys per table 12.63
Average number of sentences per table 164.51

Table 8.4: Human verification statistics.

Statistic Metric Numbers

Percentage of correct labels (%) 99.4
Average Grammar score (1-5) 4.89
Average Complexity score (1-5) 3.64
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Table 8.5: Distribution of different reasoning types across all categories in Auto-TNLI.

Statistics City Album Person Movie Book F&D Org Paint Fest S&E Univ
numerical 19 7 28 24 16 8 19 3 14 9 5
co-reference 0 0 2 0 0 0 0 0 0 0 0
multi-row 4 0 15 5 0 7 6 7 1 1 6
KCS 21 2 45 9 3 0 24 5 0 5 27
temporal 1 6 31 5 1 0 1 4 3 6 2
syntactic-alt 23 0 6 10 2 8 6 2 14 4 28
simple-lookup 58 6 54 49 34 19 45 16 32 21 72
entity-type 0 0 54 0 0 0 1 4 0 3 1
ellipsis 0 0 20 0 0 0 1 0 0 1 0
subjective-oot 0 0 0 0 0 0 0 0 0 0 0
name-identity 0 0 6 0 0 0 3 0 0 0 0
lexical 25 0 7 20 19 3 30 2 13 6 27
quantification 13 5 19 11 11 3 8 1 10 11 3
negation 0 0 1 0 5 0 5 0 0 0 1

Table 8.6: Statistics of reasoning type distribution across the different categories in Auto-TNLI.

Reasoning City Album Person Movie Book F&D Org Paint Fest S&E Univ
No. 164 26 288 133 48 91 149 44 87 67 172
Avg. 2.52 1.37 2.25 1.77 1.78 1.86 1.99 2.2 1.74 1.68 2.12
Max 4 2 7 3 3 4 4 4 4 3 4

Table 8.7: Statistics of distribution of different reasoning types across all categories in Auto-
TNLI.

Reasoning Average Max Min Cumulative Reasoning Average Max Min Cumulative
numerical 13.82 28 3 152 entity-type 5.73 54 0 63
co-reference 0.18 2 0 2 ellipsis 2 20 0 22
multi-row 4.73 15 0 52 subjective-oot 0 0 0 0
KCS 12.82 45 0 141 name-identity 0.82 6 0 9
temporal 5.45 31 0 60 lexical 13.82 30 0 152
syntactic-alt 9.36 28 0 103 quantification 8.64 19 1 95
simple-lookup 36.91 72 6 406 negation 1.091 5 0 12
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Table 8.8: Accuracy with RoBERTaBASE model across several evaluation splits with / without
fine-tuning on Auto-TNLI. bold - represents max across rows i.e. best train/augmentation setting.

Training Augmentation Strategy Cat-Ran Cross-Cat Key NoPara Cross-Para Entity

w/o
Auto-
TNLI

w/o finetuning 50.00 49.64 50.17 49.77 49.75 49.78
InfoTabS 66.17 63.86 65.41 65.15 65.12 63.66
MNLI 67.15 64.95 64.79 65.33 65.33 62.2
MNLI +InfoTabS 69.28 65.9 65.25 66.41 66.39 65.02

w
Auto-
TNLI

Hypothesis-Only 53.74 55.1 58.82 66.47 66.86 56.36
Auto-TNLI 78.74 77.94 82.39 90.06 89.38 74.94
MNLI +Auto-TNLI 83.82 78.95 84.71 91.17 90.57 77.66
MNLI +InfoTabS 83.62 80.78 85.23 90.98 90.03 77.19
+Auto-TNLI

Table 8.9: Category-wise results for Auto-TNLI (F&D- Food & Drinks, S&E - Sports &
Events)

Train-Data City Album Person Movie Book F&D Org Paint Fest S&E Univ
Orig 78.32 67.81 92.45 97.12 96.31 92.27 92.44 98.93 87.44 82.53 85.59
Orig +Count 61.89 68.26 94.45 98.67 98.72 97.04 96.46 99.56 93.73 95.68 93.02
MNLI +Orig 78.6 68.12 92.89 97.74 97.21 93.19 93.06 99.36 88.12 84.18 87.03
++Count 62.32 68.01 94.54 99.01 98.46 97.47 96.8 99.63 93.66 95.08 93.56

Table 8.10: Cross-category analysis of our data. red - shows the least accuracy when trained on a
category and evaluated on another. green - the least accuracy obtained when tested on a category
and trained on the others. violet - intersection of the two cases above (F&D- Food & Drinks, S&E -
Sports & Events)

Category City Album Person Movie Book F&D Org Paint Fest S&E Univ
City 88.64 51.85 70.34 77.29 77 68.48 75.05 70.73 75.98 66.75 77.43
Album 52.92 79.35 65.2 60.28 57.38 65.75 59.16 53.48 58.8 55.75 52.9
Person 75.57 57.57 94.58 89.72 91.02 81.99 83.86 80.52 86.01 69.58 81.25
Movie 76.49 56.97 85.41 98.26 87.01 82.11 84.65 71.29 84.79 69.34 81.01
Book 54.03 53.37 76 77.69 97.84 78.68 76.81 73.51 64.94 71.62 53.76
F&D 61.79 56.72 80.67 83.24 87.55 95.82 80.46 76.49 74.61 68.71 58.03
Org 74.73 55.89 83.67 88.26 85.08 80.64 96.36 70.72 83.85 68.84 81.22
Paint 54.24 50.45 65.71 70.39 73.41 68.3 64.52 99 59.58 61.52 54.44
Fest 73.4 52.46 82.65 87.77 81.98 78.23 80.02 72.27 88.49 64.83 77.3
S&E 51.52 53.53 69.15 73.52 85.75 72.49 70.23 76.24 61.86 95.39 52.17
Univ 76.06 51.16 78.67 85.03 76.26 76.99 78.46 68.18 79.77 69.91 91.9
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Table 8.11: Cross-entity analysis of our data. red - shows the least accuracy when trained on
a entity and tested on another. green - the least accuracy obtained when tested on an entity and
trained on the others. violet - intersection of the two cases above (P&T- Person Type, D&T - Date
& Time)

Entity Person P&T Skill Org Quantity D&T Location Event URL Product Other
Person 98.44 81.24 85.56 84.5 68.83 61.59 84.77 84.97 76.14 86.1 78.74
P&T 70.45 98.33 68.77 67.84 55.58 55.42 64.77 78.26 58.94 67.17 71.1
Skill 79.44 88.01 93.44 79.92 53.76 57.65 78.48 89.18 73.04 82.29 73.13
Org 92.36 87.33 86.58 95.62 63.56 58.03 87.19 87.12 84.09 86.9 81.29
Quantity 82.12 61.93 67.27 71.41 91.36 63.22 78.13 77 78.97 70.71 70.62
D&T 77.27 65.01 60.18 74.98 64.39 85.87 77.28 71.19 88.93 64.78 70.02
Location 88.32 76.32 86.3 83.18 68.89 62.31 94.43 81.57 83.69 79.98 75.75
Event 86.01 76.66 79.52 79.8 66.14 57.17 79.75 97.09 79.05 77.92 75.6
URL 61 56.27 58.42 60.88 51.61 55.02 62.68 60.56 95.25 56.07 55.09
Product 88.82 84.03 87.59 85.5 67.24 62.11 87.02 89.83 77.77 98.99 77.37
Other 83.39 84.98 80.82 78.24 62.44 58.29 76.97 86.74 69.98 82.78 93.88

Table 8.12: Accuracy of combine stage I i.e. NEUTRAL versus NON-NEUTRAL and stage II i.e.
ENTAIL versus CONTRADICT classifiers (RoBERTaBASE) across several data augmentation settings.
Here, for stage one we also explore pre-fine tuning on MNLI data. bold - represents max across
columns i.e. the best augmentation setting.

Stage 2: Entail versus Contradict
Split No Augmentation Orig Orig+Count MNLI+Orig MNLI+Orig+Count

Stage 1: InfoTabS
dev 71.06 70.72 71.39 72.28 72.22
α1 67.72 67.56 69.33 68.78 69.89
α2 59.11 59.22 58.94 59.5 61.28
α3 56.94 56.94 58.17 58.33 58.61

Stage 1: MNLI +InfoTabS
dev 70.67 70.89 71.44 72.56 72.67
α1 68.94 68.83 70.56 70.67 72.00
α2 60.56 60.83 60.5 61.11 62.50
α3 58.44 57.72 59.11 60.06 59.94

Table 8.13: Performance (accuracy) of stage one RoBERTaBASE (i.e. NEUTRAL versus NON-
NEUTRAL) across several data augmentation settings. Here, No-Augmentation means InfoTabS,
and MNLI means MNLI + InfoTabS. bold same as Table 8.12.

Test-split No Augmentation MNLI

dev 84.11 84.50
α1 82.94 84.83
α2 85.33 87.61
α3 73.17 75.22

Table 8.14: Performance (accuracy) of stage two RoBERTaBASE (i.e. ENTAIL versus CONTRADICT)
classifier across several data augmentation settings. bold same as Table 8.12.

Split No Augmentation Orig Orig+Count MNLI+Orig MNLI+Orig+Count
dev 77.5 77.83 78.08 80.75 80.25
α1 73.58 73.83 76.33 76.5 79.00
α2 56.92 57.42 56.92 58.42 60.25
α3 70.58 69.42 72 73.08 72.58
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Table 8.15: Frequency of labels assigned as ENTAIL in each reasoning type across 3 settings and
Gold labels for InfoTabS. bold - represents max across rows i.e. best train/augmentation setting.

MNLI MNLI
Human No Orig +Orig Human No Orig +Orig

Aug +Count +Count Aug +Count +Count
Development set α3 set

numerical 11 6 8 8 14 1 3 5
co-reference 8 4 4 3 5 2 2 3
multi-row 20 13 11 13 15 6 8 8
KCS 31 18 21 21 11 6 9 8
temporal 19 10 15 16 10 6 7 8
syntactic-alt 0 0 0 0 2 1 1 2
simple-lookup 3 3 3 3 8 8 7 8
entity-type 6 4 5 4 8 3 6 6
ellipsis 0 0 0 0 1 0 0 0
subjective-oot 6 3 4 4 2 1 1 1
name-id 2 1 1 1 1 1 1 1
lexical 5 3 3 3 3 2 3 3
quantification 4 1 3 3 2 2 2 2
negation 0 0 0 0 0 0 0 0

Table 8.16: Frequency of labels assigned as CONTRADICT in each reasoning type across 3 settings
and Gold labels for InfoTabS. bold - represents max across rows i.e. best train/augmentation
setting.

MNLI MNLI
Human No Orig +Orig Human No Orig +Orig

Aug +Count +Count Aug +Count +Count
Development set α3 set

numerical 7 5 5 5 14 12 10 7
co-reference 13 8 10 8 8 6 5 4
multi-row 17 12 12 12 12 10 8 8
KCS 24 15 17 16 17 12 12 12
temporal 25 15 18 15 16 14 11 12
syntactic-alt 0 0 0 0 0 0 0 0
simple-lookup 1 0 0 0 2 2 2 2
entity-type 6 3 4 4 9 4 3 1
ellipsis 0 0 0 0 0 0 0 0
subjective-oot 6 2 3 2 9 5 4 3
name-identity 1 1 1 1 0 0 0 0
lexical 4 4 3 4 8 5 4 3
quantification 6 3 4 4 4 2 1 2
negation 6 6 6 6 4 3 3 2
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Table 8.17: Performance (accuracy) of RoBERTaBASE (i.e. ENTAIL versus CONTRADICT i.e. sec-
ond stage) classifier with various data augmentation for limited supervision setting i.e. varying
percentage of InfoTabS training data. The average standard deviation across 3 runs is 1.36 with
range 0.5% to 3.5%. bold same as Table 8.12.

Tr(%) No Augmentation Orig Orig+Count MNLI+Orig MNLI+Orig+Count
Development set.

0 50.25 59.58 52.58 62.67 60.75
5 65.31 69.92 69.86 70.81 71.11

10 67.53 72.08 69.83 74.83 73.42
15 69.47 71.69 73.61 75.28 74.42
20 71.28 73.61 72.47 74.11 74.11
25 70.21 72.88 74.54 74.71 74.63

α1 set.
0 49.92 59.42 52.42 61.58 62.33
5 65.75 69.08 68.89 70.72 70.92

10 67.58 71.42 69 72.58 74
15 69.14 70.69 70.83 73.28 74.25
20 71.53 72.47 72.39 74.03 74.61
25 69.75 72.38 73.75 74.5 75.13

α2 set.
0 50.17 59.00 59.75 61.17 61.67
5 43.81 54.92 53.53 56.25 58.03

10 47.92 54.08 54.5 58.83 56.75
15 47.31 54 53.03 56.89 57.42
20 49.17 54.03 54.44 56.89 55.75
25 49.79 56.33 55.25 59 58.42

α3 set.
0 49.42 59.25 56.33 64.67 63.92
5 57.72 63.47 63.5 68.06 68.14

10 60.67 65.75 62.5 71.58 67.67
15 64.42 65.69 68.47 70.03 71.11
20 65.22 67.03 67.81 70.39 71
25 64.08 67.17 67.42 70.46 70.92
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Table 8.18: First stage performance (accuracy) of RoBERTaBASE (i.e. NEUTRAL or NON-NEUTRAL)
classifier with various data augmentation for limited supervision setting i.e. varying percentage of
InfoTabS training data. The average standard deviation across 3 runs is 1.197 with range varying
from 0% to 3.14%. bold same as Table 8.12.

Tr(%) No Augmentation MNLI Tr(%) No Augmentation MNLI
Development set α2 set

0 63.11 59.28 0 64.61 65.33
5 75.75 81.42 5 78.17 84.03

10 76.86 83.08 10 79.86 85.53
15 78.92 83.03 15 81 85.72
20 78.83 82.83 20 81.58 85.89
25 78.92 83.47 25 81.81 85.89

α1 set α3 set
0 62.28 58.5 0 62.72 56.06
5 76.94 81.86 5 69.42 72.78

10 77.11 82.67 10 69.17 72.97
15 79.22 82.53 15 70.22 73.44
20 78.53 82.56 20 67.86 73.56
25 78.92 82.78 25 68.81 74.03
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Table 8.19: Both stage performance (accuracy) of RoBERTaBASE (i.e. ENTAIL, CONTRADICT or
NEUTRAL) classifier with various data augmentation for limited supervision setting i.e. varying
percentage of InfoTabS training data w/o MNLI pretraining for first stage. The average standard
deviation across 3 runs is 0.98 with range varying from 0% to 4%. bold same as Table 8.12.

Tr(%) No Augmentation Orig Orig+Count MNLI+Orig MNLI+Orig+Count
Development set

0 33.06 38.94 34.5 39.56 39.56
5 55.64 57.44 59.11 58.31 58.42

10 60 59.86 60.08 60.39 61.36
15 61.83 62.22 63.44 63.42 63.28
20 64.08 64.53 64.5 65.31 64.97
25 64.5 64.83 64.97 65.47 66.11

α1 set
0 33 38.06 34.33 40.28 40.28
5 56.64 58.75 58.89 58.67 59.03

10 60.44 60.89 60.11 60.61 61.31
15 61.81 62.94 63.03 64.33 63.89
20 63.39 63.92 62.78 64.11 63.89
25 64.36 64.39 64.28 64.89 65.69

α2 set
0 33.17 38.83 39.5 40.5 40.5
5 43.69 47.64 49.64 49.86 51.44

10 47.94 52.81 53.44 52.17 54.83
15 50.39 53.69 53.72 54.75 54.94
20 53.64 54.44 54.56 56.28 56.72
25 54.69 56 56.03 57.06 57.94

α3 set
0 32.83 38.39 36.61 41.61 41.61
5 47.42 48.31 51.03 50.94 52.31

10 48 49.61 50.08 50.67 52.86
15 50.47 52.28 53.44 53.86 53.19
20 52.53 51.14 52.69 54.17 53.69
25 52.33 51.81 52.06 54.25 53.83
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Table 8.20: Both stage performance (accuracy) of RoBERTaBASE (i.e. ENTAIL, CONTRADICT or
NEUTRAL) classifier with various data augmentation for limited supervision setting i.e. varying
percentage of InfoTabS training data with MNLI pretraining for first stage. The average standard
deviation across 3 runs is 1.89 with range varying from 0% to 5.23%. bold same as Table 8.12.

Tr(%) No Augmentation Orig Orig+Count MNLI+Orig MNLI+Orig+Count
Development set

0 43.33 47 45.44 47.94 47.72
5 61.11 63.25 64.81 64.19 64.36
10 65.28 64.94 65.53 65.61 66.78
15 65.33 65.67 66.58 66.86 66.89
20 67.25 67.36 67.67 68.78 68.19
25 68.08 68.25 68.19 69.06 69.56

α1 set
0 42.06 47.94 45.78 48.17 48.11
5 61.83 64.06 64.08 64 64.36

10 65.64 66.69 64.92 65.86 66.44
15 64.39 65.72 65.58 66.97 66.61
20 66.44 66.97 65.69 67.39 66.78
25 67.69 68.03 67.61 68.17 69.03

α2 set
0 46.72 51.61 50.5 51.5 52.06
5 49.69 53.78 56.17 56.39 57.67
10 53 57.72 58.22 57.14 60.22
15 54.47 57.83 57.81 58.97 59.14
20 56.81 57.53 57.75 59.61 60.11
25 57.31 59.17 59.22 60.11 61.08

α3 set
0 39.72 43.33 42.33 44.72 44.17
5 50.64 51.67 54.14 54.56 56.22
10 52.08 53.39 54.11 55 56.69
15 53.72 55.58 56.67 57.19 56.75
20 55.5 54.61 55.94 57.75 57.69
25 56 55.39 55.89 58.69 57.92



CHAPTER 9

PATTERN EXPLOITED TRAINING

Adapted from A. Shankarampeta, V. Gupta, S. Zhang, Enhancing tabular reasoning with

pattern exploiting training, in Proceedings of the 2nd Conference of the Asia-Pacific Chapter

of the Association for Computational Linguistics and the 12th International Joint Con-

ference on Natural Language Processing, Online, November 20-23, 2022, Association for

Computational Linguistics, pp. 706–726.

Existing methods based on language models are ineffective for reasoning over semi-

structured data, as discussed in Chapter 6. These models often ignore relevant rows and

use spurious correlations in hypothesis or pre-training information for making inferences

[83, 88, 104, 182, 202], as discussed in Chapter 7. Due to existing biases in human curated

datasets [213, 310] with hypothesis having annotation artifacts [88], often models trained

on such data lack generalizability and robustness [78], as discussed in Chapter 6. Fur-

thermore, the absence of comprehensive test sets hinders robust model evaluation. Thus,

evaluating models based only on accuracy does not reflect their reliability and robustness

[175, 221].

In this Chapter, we investigate the current model’s reasoning capability, particularly

whether they can extract the right knowledge and correctly make rational inferences from

that extracted knowledge. We focus on the task of tabular reasoning through table infer-

ence on InfoTabS [84] (Chapter 3). For instance, in Table 9.1, a model must filter out the

relevant rows, i.e., extract knowledge, before applying the proper reasoning to categorize

H1. Reasoning steps can be complex when involving numerical reasoning like count, sort,

compare, arithmetic (H1: 46 < 50), commonsense knowledge (H3: December occurs at the

end of the year), and factual knowledge (H4: LA is short for Los Angeles).

It has been proven that LMs pre-trained without explicit supervision on a huge corpus

of free web data implicitly incorporate several types of knowledge into their parameters

[199]. For extracting this knowledge from language models (LM), various methods utilize
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probing [95, 265], attention [105, 279], and prompting [200, 237] strategies. This inter-

nalized knowledge cannot be retrieved when fine-turning for a subsequent task. One

explanation is that the objectives of pre-training and fine-tuning are vastly different. This

variation in training objectives also diminishes the expected performance gains of the

task, hence necessitating further pre-training on training data [58, 224, 284]. Therefore,

reframing the subsequent task as a joint pre-training objective becomes essential. Hence,

we reformulate the tabular NLI, i.e., our downstream task as a cloze-style problem, a.k.a, a

mask language modeling (MLM) problem. For fine-tuning, we utilize the efficient Pattern-

Exploiting Training (PET) technique [231, 232, 249]. PET entails establishing pairs of cloze

question patterns and verbalizers that enable subsequent tasks to utilize the knowledge of

the pre-trained language models. In addition, PET does not need model upgrades, such as

adding more layers or parameters during pre-training.

Compared to direct fine-tuning-based techniques, i.e., training a classifier layer on

top of LM, our method improved +8.1 and +25.8 on factual and relational knowledge

evaluation tasks, respectively. On InfoTabS , a tabular inference dataset, our PET training

approach outperforms +1.72 on α1 (similar to dev), +2.11 on α2 (adversarial set), and +2.55

on α3 (zero-shot set), see Section 9.7) the existing baselines. This shows the effectiveness of

our approach, especially on adversarial and out-of-domain challenging instances. Fur-

thermore, we evaluate our improved model against instance perturbations to examine

its robustness. These perturbations are generated by modifying existing InfoTabS in-

stances, namely by changing names, numbers, places, phrases (paraphrasing), and char-

acters (spelling errors). In addition, we also incorporated counterfactual instances (i.e.,

negation) to evaluate the model’s robustness against pre-trained knowledge overfitting.

The improvement in the counterfactual setting demonstrates that our approach benefits

the model to ground better with premise table evidence. This work is published at AACL

2022 as [236].
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9.1 Contributions
Our main contributions are the following 1:

1. We propose a method for generating prompts for determining if current models can

infer from knowledge.

2. We enhance the model’s reasoning via prompt learning, i.e., PET, to extract knowl-

edge from semi-structured tables.

3. Our experiments on InfoTabS show that our proposed approach preserves knowl-

edge and improves performance on downstream NLI tasks. The results are robust

when assessed on multiple curated adversarial test sets.

9.2 Background
9.2.1 Knowledge Incorporation and Evaluation

A line of works have been proposed to integrate knowledge into the LMs using pre-

trained entity embeddings [199, 305], external memory [120, 162, 164], unstructured text

[246, 284]. Several methods, including probing classifiers, have been proposed to ex-

tract and assess knowledge from LMs [95, 97, 265], attention visualization [105, 279], and

prompting [111, 200, 237]. Many works have been published to study and create the

prompts [156, 169, 206, 237].

9.2.2 Model Robustness

Many works proposed ways to evaluate robustness to noise, fairness, consistency, ex-

planation, error analysis, and adversarial perturbations to test the model’s robustness

and reliability [78, 103, 155, 167, 179, 184, 218, 219, 220, 307]. [175] introduces a textual

perturbation infrastructure that incorporates character- and word-level systematic pertur-

bations to imitate real-world noise. [79] offered a toolbox to evaluate NLP systems on

sub-populations, transformations, evaluation sets, and adversarial attacks.

9.3 Motivation
9.3.1 Case for Reasoning on Semi-Structured Data

Reasoning semi-structured data acquire skills such as arithmetic and commonsense,

understanding the text types in the tabular cells, and aggregating information across nu-

1The dataset and associated scripts, are available at https://infoadapet.github.io/.

https://infoadapet.github.io/
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merous rows if necessary. For example, to judge the H1 in Table 9.1, the model needs to

understand ”duration” and ”length” are the same in the context of the table, which is about

a music album. Also, numerical reasoning is required to compare ”46:06” minutes” is less

than ”50 minutes”. At the same time, the model should understand that the premise (table)

is about a music album, so to classify the H1 model needs to understand the information

present in 2 rows ({”Genre”, ”Length”}) and perform numerical reasoning on top of that

factual information.

9.3.2 Implicit Knowledge Is Required for Reasoning

For instance, for H3 in Table 9.1, the model needs to first extract the relevant row, i.e.,

”Released” row from the table, then compares the phrase ”end of 1979” with the ”Released”

row value ”29 March 1979” implicitly. The model needs to perform temporal reasoning to

know that ”year 1979” is correct. However, the month ”March” is not the ”end of the year”,

but ”November” or ”December” is (implicit commonsense temporal knowledge). While

previous works tried to incorporate knowledge via pre-training [58, 182]. In this work,

we integrate knowledge and reasoning ability simultaneously using Pattern Exploiting

Training [249]. This approach improves the existing knowledge and enhances reasoning

compared to existing methods.

9.3.3 Robustness Is Critical for Model Evaluation

Tabular reasoning models typically fail on modest input modification, a.k.a. adversar-

ial manipulation of inputs, highlighting the model’s poor robustness and generalizability

limit [83]. Thus, evaluating reasoning models on adversarial sets generated by minimal

input perturbation becomes vital. As a result, we propose additional adversarial test

sets, such as using character and word level perturbations to evaluate various aspects of

model understanding and reasoning over tables. For example, if H1 (Table 9.1) is changed

to ”Breakfast in Wales is a pop album with a duration of fewer than 50 minutes.” now the

label of hypothesis H1 is changes from entailment to neutral since we do not know any

information of ”Breakfast in Wales” from Table 9.1. These minor input perturbations can

alter the hypothesis’ semantic interpretation. Idealistically, a robust model with superior

reasoning ability should perform well on these input perturbed adversarial sets, as our

technique also demonstrates.
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9.4 Our Proposed Approach
In this section we describe our method to (a) evaluate pre-trained LM knowledge for

tabular reasoning, (b) enhance model tabular reasoning capability using PET training, (c)

and assess model robustness to input perturbations.

9.4.1 Evaluation of Pre-Training Knowledge

To examine how pre-training affects knowledge-based reasoning for tabular data, we

focus on two types of knowledge (a.) factual knowledge (awareness of specific factual

knowledge about entities), (b.) and relational knowledge (awareness of possible right rela-

tions between two distinct entities). For instance, in the sentence ”Breakfast in America was

released on March 29, 1979”, ”Breakfast in America” and ”March 29, 1979” are considered as

factual knowledge, while their relationship term, i.e., ”released” corresponds to relational

knowledge.

We evaluate factual and relational knowledge in the language model before and after

training for the downstream task like reasoning. In specific, we query the model us-

ing ”fill-in-the-blank” cloze statements (a.k.a. prompts). As gauging knowledge using

prompts is limited by how the prompts are constructed. We use part-of-speech tagging to

detect nouns and verbs that are then used to mask names, numbers, and dates. These

prompts are generated using hypotheses from the α1, and dev sets as these sets have

similar distribution as the training data [84]. We construct the prompts from both entailed

and contradictory hypotheses. For prompts derived from entailed hypotheses, the model

must predict the correct masked word, i.e., a term semantically equivalent to the word in

the hypothesis. In contrast, for the prompts derived from contradicting hypotheses, the

model should predict a semantically different term with the same entity type as the one

mentioned in the hypothesis. To study the effect of the premise, we also query the model

with the premise. To do this we modify the input as premise + prompt.

9.4.1.1 Prompts for factual knowledge evaluation

As most factual knowledge is contained in proper nouns and numbers, we randomly

mask proper nouns or numbers in the hypothesis to generate a prompt and query the

Language Model to fill the masked tokens. For example ”Duration of Breakfast in America
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is 46 minutes” (Table 9.1), ”Breakfast in America”, 46 are the factual information present in

the sentence and they are connected by ”duration”. We randomly mask either ”Breakfast in

America” or ”46” to generate prompt ”Duration of Breakfast in America is ¡mask¿ minutes”.

Occasionally, a masked term can be a number in numeric form (e.g., 2); however, the model

predicted word form (”two”). We solved this issue by converting the predicted word into

its numeric form or vice versa. E.g. ”Breakfast in America is produced by ¡mask¿ producers”,

where ¡mask¿ = two.

9.4.1.2 Prompts for relational knowledge evaluation

Similar prompts are leveraged for relational knowledge. For example, to predict ¡mask¿

= released for ”Breakfast in America was ¡mask¿ towards the end of 1979”, the model needs to

understand that ”Breakfast in America” is a music album to predict ”released” instead of

”eaten” which is highly probable due the neighbor context term ”Breakfast”. We also use

WordNet [169] to discover synonyms for the masked term and see if the predicted word is

among them.

9.4.2 Knowledge Incorporation for Reasoning

The issue of deducing inferences from tabular premises is similar to the typical NLI

problem, except that the premises are tables rather than sentences. When evaluating the

reasoning skills, we use a variety of representations of the tabular premise (see Section

9.5.3). We also study the effect of pretraining on an NLI task on InfoTabS.

9.4.2.1 Pattern-exploiting training

Using Pattern-Exploiting Training (PET) [231], NLU tasks are reformulated as cloze-

style questions, and fine-tuning is performed using gradient-based methods. We use ADA

PET (A Densely-supervised Approach to Pattern-Exploiting Training) [249], which increases

supervision by separating the label token losses and applying a label-conditioned masked

language modeling (MLM) to the entire input.

The input to the language model is converted into a cloze-style form with the pattern

<premise> ? <mask>, <hypothesis>. The model is tasked to predict the masked word from

the vocabulary. The model computes each token’s probability as a softmax normalized

overall tokens, allowing the logits of all vocabulary tokens to impact each likelihood,



9.4.3 Robustness with Input Perturbations

We apply a range of character- and word-level perturbations to hypotheses to sim-

ulate circumstances where the input is slightly noisy or deviates from the training data 

distribution. We use TextAttack [176], NLP Checklist [221], and manual perturbations for 

generating the adversarial data. These adversarial sets will test the dependence of the 

model on word overlap, numerical comprehension, and hypothetical assertions. Refer to 

Tables 9.2 and 9.3 for examples.

Character-level perturbation employs perturbations such as introducing random char-

acters, switching characters, removing a random character, and substituting a random 

character in the randomly selected word. This alteration does not impact the label of the 

hypothesis because it does not alter the sentence’s meaning.

2https://universaldependencies.org/u/pos/
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similar to the regular MLM objective. While in PET, the masked word is forced to predict 

from the output space {Yes, Maybe, No} which are mapped to labels {Entailment, Neutral, 

Contradiction}. As a result, there will never be a gradient signal for non-label tokens. 

Inverting the query to the model to ”In light of the answer, what is the appropriate context?” 

from ”What is the appropriate label based on the input?” label conditioned mask language 

modeling is introduced by randomly masking out context tokens. If the label is ”entail”, 

during training, the model is obligated to predict the original token; however, if the label 

is ”contradiction” or ”neutral”, the model is forced to ignore the original token.

9.4.2.2 Masked language modeling

ADAPET randomly masks tokens (RoBERTa style) from the context. Inspired by Span-

BERT [114], ERNIE [246], we sample and mask the entire words based on pre-defined con-

ditions. In Conditional Whole Word Masking (CWWM), we create a set of words Sw from a 

given sentence, and the POS of the words in that set must be from {”Adjective”, ”Adverb”, 

”Noun, ”Verb”, ”Proper Noun”, ”Adposition”, ”Numeral”, ”Coordinating Conjunction”, 

”Subordinating Conjunction”}2. We sample words from the set Sw and mask all tokens 

matching the sampled word concurrently while maintaining the same overall masking 

rate. Figure 9.1 shows the training uses the two ADAPET components using MLM.

https://universaldependencies.org/u/pos/


164

Location perturbation modifies the identified locations (countries, cities, and nation-

alities) in a sentence to another place specified in the location map. The NER model

(TextAttack) identifies the location in a given sentence and replaces it with a sampled

location from a dictionary. Here, cities are replaced with other cities and similar changes

for countries. This perturbation transforms the entail clauses into contradictions but does

not affect the original neutral and contradiction labels.

Name perturbation randomly replaces a person’s name with the other one from a

name list. This perturbation alters the label of every hypothesis into a neutral because

the perturbed hypothesis and premise mention different persons.

Perturbing Numbers changes the entailed sentences into contradictions but does not

affect the labels of neutral and contradictions. Contradictory statements remain contradic-

tory because it is implausible that a randomly sampled number will be the actual number

in the premise, making the hypothesis entailed.

Negation transforms entailment into a contradiction by negating the given sentence,

keeping neutrals intact.

Paraphrasing paraphrases the given sentences without the loss of meaning using man-

ual paraphrasing and Pegasus model3. Paraphrasing does not affect the inference label as

it does not change the semantic meaning of the hypothesis.

Composition of Perturbations perturbs sentences by applying various distinct per-

turbations sequentially. E.g., in num+para+name we perturbed a sentence ”Supertramp,

produced an album that was less than 60 minutes long”, with premise Table 9.1 to ”Supertramp,

produced an album that was less than 40 minutes long” (number) then ”Supertramp released an

album which lasted less than 40 minutes.” (paraphrase) then ”James released an album which

lasted less than 40 minutes” (name).

9.5 Experiments and Analysis
9.5.1 Dataset

Our experiments we use InfoTabS, a tabular inference dataset introduced by [84]. The

dataset is diverse in terms of the tables domains, categories, and corresponding keys

(entity types and forms) it contains, as illustrated in examples Table 9.1. In addition,

3https://biturl.top/MzQnMv

https://biturl.top/MzQnMv
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4https://biturl.top/e6Vney

[84] reveals that inference on corresponding hypotheses requires extensive knowledge

and commonsense reasoning ability. Given the premise table, hypothesis in the dataset 

is labeled as either an Entailment (E), Contradiction (C), or Neutral (N).

In addition to the conventional development set and test set (referred to as α1), an 

adversarial test set (α2) lexically equivalent to α1 but with minor changes in the hypotheses 

to flip the entail-contradict label and a zero-shot cross-domain test set (α3) containing large 

tables from other domains that are not in the training set are used for evaluation. For all 

of our experiments, we use the accuracy of classifying the labels as our primary metric

 for evaluation. The domain of tables in training sets and α1,α2 are similar. However, the 

training and fine-tuning tables are exclusive. Each of the test sets α1, α2, α3 has 200 unique 

tables paired with 9 hypothesis sentences (3E, 3C, 3N), totalling 1800 table-hypothesis 

pairs. Table 9.4 depicts the statistics of perturbed sets from InfoTabS.

9.5.2 Models

We use the pre-trained RoBERTa-Large (RoBERTaL) [158] language model from Hug-

gingFace [281] for all of our investigations. We employ various configurations of lan-

guage models to assess knowledge in two different cases. These configurations include 

RoBERTaL, RoBERTaL finetuned on InfoTabS (RoBERTaL+CLS), RoBERTaL trained for 

tabular inference using PET (ADAPET), and finetuning InfoTabS on ADAPET+CLS. Here 

we define finetuning as training a classifier head (CLS). We also investigate the effect of 

NLI pre-training using RoBERTaL pretrained on MNLI [280], and mixed dataset (mixNLI) 

containing ANLI+MNLI+SNLI+FeverNLI 4 [17, 183, 185]. All models are trained on 16538 

table-hypothesis pairs (1740 tables) for 10 epochs with a 1e-5 learning rate.

9.5.3 Table Representation

We explored two ways to represent table (a.) Table as paragraph uses Better Paragraph 

Representation for table representation, (b.) and Distracting Row Removal prunes tables 

based on the similarity between hypothesis and tables rows. We investigated the pruning 

of top 4 (DRR@4) and top 8 (DRR@4) rows for our experiments. Both representation 

methods are adapted from [182].

https://biturl.top/e6Vney
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9.5.4 Results and Analysis

Our experiments answer the following questions:

1. RQ1: Can the large language model use pre-trained knowledge for reasoning? Does

our adaptive training method enhance model reasoning?

2. RQ2: Does fine-tuning downstream tasks benefit model reasoning? Can our adap-

tive training benefit model via enhancing its reasoning knowledge?

3. RQ3: Is our adaptive method-based model robust to input perturbations? Can our

method enhance model’s semantic-syntactic comprehension?

9.5.4.1 Models knowledge evaluation

To answer RQ1, we evaluate the knowledge in the presence and absence of the premise

using the Entail and Contradictory hypotheses, which are taken from the evidence in the

premise tables. We do not use Neural statements as they may contain subjective and out-

of-table information.

In all the settings (Tables 9.5 and 9.6) with and without premise, our model outper-

formed RoBERTaL+CLS. The addition of the premise enhances model performance further.

This can be ascribed to additional knowledge in the premise that our PET-trained model

can leverage efficiently for reasoning. From Table 9.5, we observe that for all settings,

our approach gave 1̃00% improvement in relational knowledge evaluation compared to

RoBERTaL+CLS. Even training a classifier on top of ADAPET outperforms RoBERTaL+CLS.

We also evaluated on contradiction hypothesis to assess if the model can rightly identify

false claims despite having correct entity types.

There is a significant difference between the Top 1 accuracy of premise+E and premise+C

for factual knowledge evaluation as the model should not predict the masked token in

the prompt from a contradiction statement, especially in factual prompts. And for rela-

tional knowledge, irrespective of the label of the hypothesis, the model should predict

the masked token correctly if the model rightly understands the entity types of words

in the sentence. In almost all the settings, our approach performs almost comparable

to RoBERTaL, and it even outperforms RoBERTaL in only Entail, and Premise+ Entail

settings. Training a classifier on top of RoBERTaL decreases the performance knowledge

evaluation but training a classifier head on top of ADAPET still tops RoBERTaL+CLS, thus
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demonstrating the benefits of our approach. A similar observation was reported with Top

5 accuracy (Table 9.6).

9.5.4.2 Knowledge incorporation for reasoning

To answer RQ2, we experiment with various premise representations of tables as para-

graphs (BPR, DRR@4, DRR@8) (see Table 9.7). We observe that Roberta-Large with ADAPET

improves performance in all premise representations except for α3 with BPR compared to

RoBERTaL+CLS due to an increased number of keys in the tables (13.1 per table in α3 when

compared to 8.8 per table in α1 and α2). Results in Table 9.7 are the average accuracy of the

models tested on multiple seeds.

We experiment with premise as a linearized table and compared our results with [84],

see Table 9.8. Our proposed approach was able to outperform the baselines in [84] by a

significant margin.

With ADAPET, we also improve performance using linearized table compared to [84]

(+1.04 in α1, +0.58 in α2, +0.69 in α3). ADAPET (token masking, no pre-training) tops

RoBERTaL+CLS in every premise representation and test split. +1.72 in α1, +2.11 in α2,

+2.55 in α3 with DRR@4. CWWM with ADAPET also outperformed RoBERTaL+CLS.

However, the performance of the two masking procedures is comparable for all test sets,

even with the classifier setting.

We notice that the DRR@8 representation outperforms the best, especially in α3 due

to removing the irrelevant rows (+4.34 over BPR, +0.64 over DRR@4). The zero-shot test

set α3 which has a significant proportion of unseen keys (different domain tables) when

compared to other test sets (number of unique keys intersection with train is 312, 273, 94

for α1, α2 and α3 respectively) has seen a substantial improvement with the use of NLI pre-

trained model. When compared to ADAPET (token masking, no pretraining), there has

been an improvement of +2.13 units (no CLS) and +2.54 units (with CLS) with DRR@8 over

no pre-training. We also observed that pre-training in more diverse data helps improve

performance [6, 205]. Models which are pre-trained on mixNLI4 outperformed MNLI pre-

trained in almost every setting (+0.8 in α1, +1.9 in α2, +2.2 in α3 with no CLS, DRR@8).
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9.5.4.3 Robustness to input perturbation

To answer RQ3, we evaluate our model on several challenging input perturbations. The

perturb test sets are generated using various character-level, and word-level perturbations

are also tested with BPR, DRR@4, and DRR@8 table representations (see Table 9.9). To

generate these sets, we applied perturbations on dev, and α1 sets as the distribution of

these sets are similar to the training set.

Except for the perturbations involving names, our method ADAPET (no pre-training)

outperforms RoBERTaL+CLS. We see the max improvement of ADAPET in the Negation

(+4.4); this implies our model can handle counterfactual statements well. We observed

that training a classifier head on top of ADAPET performed better with the adversar-

ial sets involving multiple perturbations. In the challenge set with number+paraphrase

all the ADAPET-based models outperformed RoBERTaL+CLS by 2x times. We observed

that using NLI pre-training also helps substantially improve the robustness. With the

use of mixNLI and MNLI pre-trained weights, the performance of ADAPET-based mod-

els improved substantially compared to those without pre-training, even outperforming

RoBERTaL+CLS. From Table 9.9, it is clear that with hypotheses involving multiple pertur-

bations, RoBERTaL+CLS tends to perform more poorly compared to the ADAPET-based

model. The performance on all perturb sets is much worse than that of the corresponding

model on dev, α1 sets. Improving the performance of these sets is crucial.

Qualitative Analysis of Perturbation Sets: On a randomly sampled subset containing

100 examples from each of the perturbation sets, we task a human evaluator to label them

and give a score (out of 5) to the grammar of the hypotheses. For most cases, i.e., 11 out

of 14, we observe a correct of > 80% indicating the correction of our adversarial tests.

Furthermore, in half of the cases (7/14), the correctness score was above 95%. Grammar

analysis shows that most sentences are highly grammatical, with an average score of

4.5/5.0. In the perturbation ”number+paraphrase” we only observed 77% of label correct-

ness. This could be due to changing numbers, followed by paraphrasing, which changed

some contradiction hypotheses to neutral ones. A similar observation is also observed in

”number+char” where numbers are modified in character perturbation. We also compare

the models’ performance on these sampled perturbed sets after human corrections in labels

and grammar. We observed that the performance on these corrected sets is similar to the
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generated perturbed sets, as in Table 9.10.

We also evaluate robustness with premise representation. In Tables 9.10 and 9.11 we 

show the performance of the model on the adversarial tests which are trained and tested 

with DRR@4, BPR representations of premise. We found the results are similar to the 

results in Table 9.9. Human correctness evaluation of the perturbation set is hown in Table 

9.12. We also study the classification of Entailed and Contradictory hypotheses when the 

model is trained and tested on the data without any Neutral hypotheses, see Table 9.13. We 

found that DRR@4, DRR@8 representations of premise performs better that BPR because 

of the less distracting premise.

9.5.5 Error Analysis

When compared to Figure 9.2, in Figure 9.3, there is a substantial improvement in iden-

tifying NEUTRAL and CONTRADICTION, but there is also a confusion in identifying EN-

TAILMENT. Using the NLI-pre-trained model improves the detection of ENTAILMENT. 

A similar observation is also observed with using classifying layer (+CLS) (see Figures 9.3 

and 9.4).

In Figure 9.5, we see the greatest inconsistency is with NEUTRAL being misidenti-

fied as ENTAILMENT across all models, and this is not that significant with using the 

classifying layer (+CLS) (see Figures 9.6, 9.7, and 9.8). Although with the classifying 

layer, there is increased confusion about CONTRADICTION being predicted as ENTAIL-

MENT. Figure 9.9 represents the confusion Matrix between gold labels versus predictions 

of ADAPET(CWWM) and ADAPET(CWWM)+CLS model.

Table 9.14 shows a subset of the validation set labeled based on the different ways 

the model must think to put the hypothesis in the correct category. On average, all the 

ADAPET-based models perform similarly, but the human scores are better than the model 

we utilize. We observe that for certain reasoning types, such as Negation and Simple 

Look-up, neither humans nor the model arrives at the correct hypothesis, demonstrating 

the task’s difficulty. For Numerical, Lexical, and Entity type reasoning, our model comes 

very close to human scores.

In Table 9.15, we observed that the City category on proposed models performs worse 

probably as a result of the engagement of more numeric and specific h ypotheses com-
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pared to the other categories, as well as longer average table size. Our models perform

extremely well in identifying ENTAILMENT in Food & Drinks category because of their

smaller table size on average and hypothesis requiring no external knowledge to reason as

compared to CONTRADICTION. Our models also struggle in detecting NEUTRAL and

CONTRADICTION in Organization category.

9.5.5.1 What did we learn?

Reformulating the NLI task as an MLM problem enabled the inclusion of premise

table knowledge into Language Models (LM) for efficient reasoning. Using ADAPET, we

have shown that knowledge can be retained and assimilated into reasoning tasks more

effectively. ADAPET training also improves the model’s ability to reason on downstream

tasks. Similar observation is also observed in prior works [246, 284] where MLM is uti-

lized to incorporate external knowledge, although the later require additional table based

pre-training. Moreover, [83, 139] have shown that the LM utilizes spurious patterns to

accomplish reasoning tasks. Our perturb sets study informed us that our ADAPET-based

method is more robust than direct classification to semantic-syntactic alternations (see

Section 9.6 for further discussions).

9.6 Further Discussion
Why table as a paragraph? A massive data corpus is used to pre-train the large lan-

guage models. In contrast to semi-structured data, the bulk of pre-training data is unstruc-

tured. These models should, of course, perform better on unstructured data and struggle

with semi-structured data. Tables in InfoTabS [84] are semi-structured in nature. These

tables do not explicitly state the relationship between the keys and values; they can also

have variable schemas. The album’s overall duration is 46:06 minutes, according to the

row with key Length and value 46:06. It is difficult to comprehend implicitly that ”Length”

refers to time length in minutes. Because of the absence of implicit information, a simple

table linearization will not be sufficient. [84, 182] experimented with various forms of table

representations. They found that representing tables as paragraphs gave better results

and can leverage the advantage of pre-trained models datasets like MNLI for even better

performance.
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Why NLI task as cloze-style questions? While [88] showed MLM pre-training with 

unlabeled target data could further improve the performance on downstream tasks. [33] 

also showed that using MLM pre-training makes models robust to lexicon-level spurious 

features. [277] presented a methodology for analysis that connects the pre-training and 

downstream tasks to an underlying latent variable generative text model. They observed 

that prompt tuning achieves downstream assurances with less stringent non-degeneracy 

constraints than head tuning. By reformulating the NLI task as cloze style questions, we 

can use label conditioned MLM with prompt tuning, which resulted in a better perfor-

mance on tabular reasoning on InfoTabS.

9.7 Conclusion
In this work, we have validated the effects of factual and relational knowledge in the 

language model via handcrafted prompts for tabular reasoning. Through prompt learning, 

i.e., Pattern-Exploiting Training, we extracted knowledge from semi-structured tables and 

further improved the model’s reasoning capabilities. Our intensive experiments on the 

InfoTabS demonstrate that our approach can conserve knowledge and enhance tabular 

NLI performance. The conclusions hold up well when tested against carefully crafted 

adversarial test sets based on character and word-level perturbations.

9.7.1 Method Limitations

Entity tables are the focus of our solution. Its scalability in constructing prompts and 

other tables with different structures is limited by the idea that manually identified pattern 

from the specific dataset and template-based p rompts. In addition, as not different from 

other NLP tasks, automatically detecting knowledge patterns and bridging patterns to 

prompts, especially for semi-structured tables, is under-explored. Furthermore, investigat-

ing prompting for sophisticated structured tables such as nested structures (e.g., lists inside 

tables), hierarchical tables (e.g., table inside a table), and multi-modal tables (pictures 

within table) will necessitate substantial effort.

9.7.2 Future Directions

We have identified t he f ollowing f uture d irections: ( a.) D esigning b etter p rompts for 

knowledge evaluation: Our current prompts treat entail and contradictory statements as the
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same while evaluating knowledge. In the presence of the premise, masking Breakfast in

America in H3 (Table 9.1) and using that as an input model will predict Breakfast in America

even though the hypothesis is a contradiction. We want to work on developing prompts

label conditioned evaluation based on existing work on prompt engineering. [156]. (b.)

Improving Robustness: While our models’ performance on the challenging adversarial test

sets is lower than benchmarks on InfoTabS , we do not know its reason. The created test

sets may be challenging because they focus on phenomena that existing models cannot

capture or exploit blind spots in a model’s training set. Following the ideas of Inoculation

by Fine-Tuning [155], we want to improve and assess the reasons behind the results in

Table 9.9.
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Figure 9.1: The training uses the two ADAPET components. Here, the blue boxes represent the
task inputs (entailed, in this case) a) Decoupling Label Loss: Using the cross entropy loss across
all labels, the model must predict the right and wrong labels at the masked-out position. b) Label
Conditioning: The model should predict the original token at a randomly masked-out position if
the input text has the entail label. Otherwise, not if the label is contradiction or neutral.

Figure 9.2: Confusion Matrix: Gold Labels vs predictions of RoBERTaL+CLS.

Figure 9.3: Confusion Matrix: Gold Labels versus predictions of ADAPET(token),
ADAPET(token)+CLS.
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Figure 9.4: Confusion Matrix: Gold Labels versus predictions of ADAPET (pretrained mixNLI),
ADAPET (pretrained mixNLI)+CLS.
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Figure 9.5: Consistency graph for predictions of ADAPET(token) versus (a) RoBERTaL+CLS (b)
ADAPET (CWWM) (c) ADAPET (pretrained mixNLI) in that order respectively.
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Figure 9.6: Consistency graph for predictions of ADAPET(token)+CLS versus (a) RoBERTaL+CLS
(b) ADAPET (CWWM)+CLS (c) ADAPET (pretrained mixNLI)+CLS in that order respectively.
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Figure 9.7: Consistency graph for predictions of ADAPET(token)+CLS versus (a) RoBERTaL+CLS
(b) ADAPET (pretrained mixNLI)+CLS (c) ADAPET (pretrained MNLI)+CLS in that order respec-
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Figure 9.8: Consistency graph for predictions of ADAPET(token) versus (a) RoBERTaL+CLS (b)
ADAPET (pretrained mixNLI) (c) ADAPET (pretrained MNLI) in that order respectively.

Figure 9.9: Confusion Matrix: Gold Labels versus predictions of ADAPET(CWWM),
ADAPET(CWWM)+CLS.
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Table 9.1: An example of tabular premise from InfoTabS [84]. The hypotheses H1, H4 is entailed,
H2, H5 is a neutral and H3, H6 is a contradiction. Here, the bold entries, which correspond to the
first column, are the keys, while the corresponding entries in the second column of the same row
are their respective values.

Breakfast in America

Released 29 March 1979
Recorded May–December 1978
Studio The Village Recorder in LA
Genre Pop, art rock, soft rock
Length 46:06
Label A&M
Producer Peter Henderson, Supertramp

H1: Breakfast in America is a pop album with a duration
less than 50 minutes.
H2: Peter Henderson produces only rock albums.
H3: Breakfast in America was released towards the end
of 1979.
H4: Breakfast in America is recorded in California.
H5: Supertramp is an English band.
H6: The album was released on 29 March 1978.

Table 9.2: Examples of various perturbations used to generate the adversarial test sets based on
Table 9.1.

Perturb Original text Perturbed text

Char Peter Henderson produces only rock albums

Peter Henbgderson produces only rock albsums
Peter Hendersno produces only rokc albums
Pter Henderson produces onl rock abus
Petqr Henkerson prgduces only rock alocms

Loc.
Breakfast in America is recorded in California Breakfast in America is recorded in Florida.
Breakfast in America is recorded in USA Breakfast in America is recorded in Syria.
Breakfast in America is by an English rock band. Breakfast in America is by an Mexican rock band.

Name Peter Henderson produces only rock albums John Doe produces only rock albums

Num. The album was released on 29 March 1978. The album was released on 29 March 346.
The album was released on 1 March 1978.

Neg. The genres of the album are pop and rock. The genres of the album are not pop and rock.
Para The album was recorded in the last half of 1979. In the 2nd part of 1979, the album was recorded.

Table 9.3: More examples of various perturbations used to generate the adversarial test sets based 
on Table 9.1.

Perturb Original text Perturbed text

neg+char The genres of the album are pop and rock. The gejnres of the alzum are not pbp and rock.
neg+name Peter Henderson’s album was recorded in 1979.John Doe’s album was not recorded in 1979.
num+char The album was recorded in 1979. The album was recqorded in the last hplf of 459.
num+name Peter Henderson’s album was recorded in 1979.John Doe’s album was recorded in 731.
num+neg The album was released on 29 March 1978. The album was not released on 29 March 346.
num+para The album was recorded in 1979. In the 2nd part of 1278, the album was recorded.
para+name Peter Henderson produces only rock albums. Only rock albums are produced by John Doe.
num+para+namePeter Henderson’s album was recorded in 1979.The album by John Doe was recorded in 3147.
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Table 9.4: Number of examples for each perturbation type in the adversarial set.

Peturb Type Size Peturb Type Size

character 1800 negation+char 1726
location 1229 negation+name 1677
name 1646 number+char 837
negation 1726 number+name 776
number 837 number+negation 817
paraphrase 1800 num+paraphrase 837
num+para+name 776 paraphrase+name 1721

Table 9.5: Top 1 accuracy of factual and relational knowledge evaluation on DRR@4.(w/o - no
CLS, RoBERTaL+CLS

Type Input RoBERTaL ADAPET

Top 1 Accuracy w/o +CLS w/o +CLS

Factual

only E 35.5 26.2 34.3 29.2
prem + E 59.4 29 59.7 44.8
only C 37.2 24.6 36.9 29.8
prem + C 54.6 26.5 49.7 39.9
only E∪C 36.3 25.4 35.5 29.5
prem + E∪C 57.7 27.8 54.6 42.5

Relational

only E 48.9 27 52.8 35.6
prem + E 57.7 22.4 58.7 41
only C 44.7 27.3 47.3 35.6
prem + C 51.8 24 52.9 34
only E∪C 46.7 27.2 49.9 35.6
prem + E∪C 54.6 23.2 55.7 37.3

Table 9.6: Top 5 accuracy of factual and relational knowledge evaluation on DRR@4. (w/o - no
CLS, RoBERTaL+CLS.

Type Input RoBERTaL ADAPET

Top 5 Accuracy w/o +CLS w/o +CLS

Factual

only E 50.4 40.6 52.4 46.6
prem + E 72 45.3 71.5 60.7
only C 55.2 37.4 56 47.8
prem + C 74.6 39.3 70.2 56
only E∪C 52.7 39.1 54.1 47.2
prem + E∪C 73.3 42.5 70.9 58.5

Relational

only E 64.9 51.6 67.3 57.5
prem + E 70.8 49.1 72.2 66.3
only C 64.7 53.1 65.8 57.8
prem + C 71.1 53.3 72 62
only E∪C 64.8 52.4 66.5 57.6
prem + E∪C 70.9 51.3 72.1 64.1
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Table 9.7: Reasoning results on InfoTabS comparing RoBERTaL+CLS, ADAPET, ADAPET+CLS
(without pre-training (token, CWWM), with mixNLI, MNLI pre-training). token, CWWM - mask-
ing strategies, mixNLI, MNLI pre-training uses RoBERTa style token masking.

Splits Premise RoBERTaL ADAPET ADAPET+CLS

+CLS token CWWM +mixNLI +MNLI token CWWM +mixNLI +MNLI

Dev
BPR 76.83 77.5 77.67 79.07 78.07 77.66 77.27 79.63 78.46

DRR@4 76.39 76.67 76.97 78.57 77.33 76.88 77.11 78.64 77.44
DRR@8 75.36 77.77 77.63 78.83 77.93 77.81 77.57 79.42 78.96

α1

BPR 75.29 76.87 75.93 77.33 77.47 77.47 78.05 77.96 78.33
DRR@4 75.78 77.5 77.53 78.6 78.17 77.18 77.66 78.04 78.13
DRR@8 75.61 78.3 78 79 78.2 78.03 78.7 78.63 79.05

α2

BPR 66.5 67.93 68.07 72.4 69.8 68.48 69.55 72.16 70.09
DRR@4 67.22 69.33 69 70.23 69.03 68.92 68.29 70.58 69.24
DRR@8 67.11 69.43 69.37 71.87 69.97 69.24 69.81 72.13 70.61

α3

BPR 64.26 63.73 64.6 66.23 64.13 64.98 65.67 68.4 66.03
DRR@4 64.88 67.43 67.5 68.7 67.33 66.02 66 68.74 67.37
DRR@8 67.53 68.07 67.63 70.2 68 66.66 67.59 69.2 68.31

Table 9.8: Results on linearized table comparing [84] and our approach (ADAPET).

Test Splits [84] Ours

Dev 77.61 76.7
α1 75.06 76.1
α2 69.02 69.6
α3 64.61 65.3
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Table 9.9: Adversarial Reasoning results on perturbed sets with DRR@8 comparing
RoBERTaL+CLS, ADAPET, ADAPET+CLS (without pre-training (token, CWWM), with mixNLI,
MNLI pre-training), token, CWWM - masking strategies, mixNLI, MNLI pre-training uses
RoBERTa style token masking. Rows in the tables are sorted in ascending order w.r.t
RoBERTaL+CLS performance.

Perturb RoBERTaL ADAPET ADAPET+CLS

+CLS token CWWM +mixNLI +MNLI token CWWM +mixNLI +MNLI

num+para+name 13.04 10.1 7.1 11.7 10.1 11.7 13.81 16.62 13.55
number+name 15.72 14.6 9.0 14 13.2 15.6 15.36 18.94 15.85
negation+name 19.08 16.1 7.2 20 11.6 14.43 12.88 14.37 12.1
num+paraphrase 27.46 59.5 61.0 58.4 57.3 52.5 51.49 56.63 54.95
paraphrase+name 30.79 22.6 18.3 28.3 24.9 27.01 27.3 30.85 27.71
name 32.7 24.7 19.0 31.1 28 28.9 29.96 33.44 30.69
random 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33
number+negation 36.13 42.7 31.8 53.2 28.3 37.91 47.32 37.75 24.04
negation+char 39.39 41.4 38.5 47.6 40.1 42.9 41.94 42.06 40.85
negation 53.7 58.1 53.3 64.8 56.1 57.6 56.83 59.15 53.88
number+char 54.43 58.8 65.2 57.1 60.3 55.79 47.9 57.1 59.28
number 56.1 57.8 62.0 57.8 57 52.44 51.37 55.79 54.6
character 63.05 62.8 63.3 65.9 64.4 64.05 64.44 66.05 66.83
location 67.6 70 70.2 67.7 69.1 69.81 66.8 67.4 65.98
paraphrase 70.56 72.3 73.2 73.8 73.4 71.6 70.5 72.66 72.3
InfoTabS (α1) 76.56 78.1 78.9 80.2 78.9 78.27 77.66 78.5 78.66

Table 9.10: Adversarial reasoning results on perturbed sets with DRR@4 RoBERTaL+CLS,
ADAPET, ADAPET+CLS (without pre-training (token, CWWM), with mixNLI, MNLI pre-
training). token, CWWM - masking strategies, mixNLI, MNLI pre-training uses RoBERTa style
token masking. Rows in the tables are sorted in ascending order w.r.t RoBERTaL+CLS performance.

Perturb RoBERTaL ADAPET ADAPET+CLS

+CLS token CWWM +mixNLI +MNLI token CWWM +mixNLI +MNLI

number+name 14.17 20 12.9 14.5 18.3 17.78 17.13 20.8 16.49
num+para+name 15.08 16.3 8.7 9.5 15.2 15.08 16.88 17.9 11.25
negation+name 18.66 17.1 13.9 7.8 11.6 18.48 13.23 10.31 10.55
number+negation 28.63 36.9 43.2 41.5 23.1 39.31 45.86 37.91 25.78
paraphrase+name 30.9 32.3 22.6 26.7 27.4 32.2 32.36 32.48 26.55
name 32.4 32.1 25.7 29.8 30.5 33.56 33.6 33.7 30.01
random 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33
negation+char 40.38 42.5 41.1 39.7 37.4 45.4 40.61 40.49 38.9
negation 46.46 59.4 57 56 52 59.03 56.89 58.4 55.7
num+paraphrase 52.56 57.3 59.5 58.4 59.4 57.7 51.86 51.13 48.9
number+char 53.34 55.5 63.2 61.6 64.8 55.3 49.81 55.85 54.9
number 54.9 59.5 59.1 56.9 59.8 55.91 52.09 51.97 51.13
character 56.88 63.7 63.7 67.1 63.3 65.16 60.88 65.16 65.27
paraphrase 66.3 72.5 72.9 73.1 72.2 69.88 68.44 73.1 72.22
location 69.65 73 71.2 70 69.9 69.97 65.825 68.59 68.1
dev 76.39 76.4 77.8 78.2 77.2 76.27 78.05 78.16 77.5
α1 75.78 76.5 78 79.4 79.2 76.44 77.66 78.22 78.11
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Table 9.11: Adversarial Reasoning results on perturbed sets with BPR comparing RoBERTaL+CLS,
ADAPET, ADAPET+CLS (without pre-training (token, CWWM), with mixNLI, MNLI pre-
training). token, CWWM - masking strategies, mixNLI, MNLI pre-training uses RoBERTa style
token masking. Rows in the tables are sorted in ascending order w.r.t RoBERTaL+CLS performance.

Perturb RoBERTaL ADAPET ADAPET+CLS

+CLS token CWWM +mixNLI +MNLI token CWWM +mixNLI +MNLI

negation+name 11.74 10.4 10.2 21.1 15.6 17.35 14.37 13.89 12.93
num+para+name 14.06 10.6 8.4 20.7 12 17.13 16.88 14.83 13.04
number+name 17.26 12.5 10.2 20.9 14.8 18.42 18.81 18.42 16.88
paraphrase+name 33 25.8 20.6 37.6 31.5 31.2 33.41 32.1 31.3
random 33.33 33.33 33.3 33.33 33.33 33.33 33.33 33.33 33.33
name 34.6 26.5 20.4 36.4 33.4 32.41 34.82 33.96 33.2
negation+char 37.71 38.5 40.3 47.8 41.3 43.56 40.21 41.25 40.49
number+negation 38.36 30.2 48.7 54.8 30.1 37.69 47.26 38.7 26.06
negation 48.9 54.2 57.2 65.4 55.3 58.27 55.27 58.45 55.6
number 56.63 62.3 55.8 51.9 56 55.43 50.53 53.52 56.1
num+paraphrase 56.98 62.3 57.6 49.7 54.5 55.55 49.34 52.26 55.19
number+char 59.11 66.1 60.3 45.1 55.6 55.9 49.32 52.46 60.2
character 61.5 64.1 62.5 64.4 66.1 64.9 63.16 66.61 65.94
location 68.2 72.4 72.7 68.1 70.1 69.08 67.69 66.47 69.48
paraphrase 68.44 72.3 71.8 72.6 72.3 72.05 70.33 71.7 72.66
dev 76.83 78.1 76.4 79.8 79.1 78.72 78.05 79.22 78.55
α1 75.29 78.1 76.1 77.4 77.4 77.38 77.83 78 78.38

Table 9.12: Results on Label Correctness (% of our generated labels match with human’s predic-
tions ) and average Grammar score (out of 5) from human evaluation.

Perturbation Label Correctness(%) Grammar Score

character 99 4.46
location 79 4.5
name 97 4.5
negation 93 4.36
number 81 4.5
paraphrase 89 4.42
negation+char 88 4.3
negation+name 96 4.5
number+char 77 4.3
number+name 96 4.5
number+negation 80 4.44
num+paraphrase 77 4.48
num+para+name 95 4.42
paraphrase+name 94 4.5

Table 9.13: Results on two label classification (Entailment & Contradiction).

Splits RoBERTaL+CLS ADAPET

DRR@4 BPR DRR@4 DRR@8

Dev 81.5 83.5 84.3 82.8
α1 80.25 83.8 84.3 84.3
α2 64.66 65.9 66.9 67.7
α3 76 75.1 78.5 77.4
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Table 9.14: Reasoning wise number of correct predictions of DRR@4 on subset of dev set, (a, b, c)
are human prediction count.

Reasoning Type
ENTAILMENT NEUTRAL CONTRADICTION

RoBERTaL ADAPET ADAPET+CLSRoBERTaL ADAPET ADAPET+CLSRoBERTaL ADAPET ADAPET+CLS

+CLS token+mixNLItoken+mixNLI +CLS token+mixNLItoken+mixNLI +CLS token+mixNLItoken+mixNLI

Numerical (11, 3, 7) 9 9 10 10 8 3 2 3 3 3 6 6 4 6 5
Lexical Reasoning (5, 3, 4) 5 4 4 3 5 2 1 1 1 2 2 3 2 3 3
Subjective/OOT (6, 41, 6) 3 3 3 3 3 37 36 36 37 35 4 4 1 3 5
KCS (31, 21, 24) 25 21 26 20 25 20 20 18 19 18 21 22 18 21 21
Temporal (19, 11, 25) 16 13 15 15 14 7 6 5 6 7 18 20 15 17 17
Multirow (20, 16, 17) 13 12 15 15 13 13 12 11 11 13 15 16 14 15 13
Coref (8, 22, 13) 5 6 5 6 6 19 20 18 20 18 7 10 8 7 8
Quantification (4, 13, 6) 2 2 2 2 2 11 11 12 12 12 2 3 3 3 3
Named Entity (2, 2, 1) 1 2 2 1 2 1 1 2 1 1 1 1 1 1 1
Simple Lookup (3, 0, 1) 2 3 3 2 3 0 0 0 0 0 0 0 0 0 0
Negation (0, 0, 6) 0 0 0 0 0 0 0 0 0 0 4 6 5 5 4
Entity Type (6, 8, 6) 6 5 5 4 6 7 7 7 7 7 6 6 5 6 4

Table 9.15: Category wise accuracy scores of DRR@4 on dev set.

Categories
ENTAILMENT NEUTRAL CONTRADICTION

RoBERTaL ADAPET ADAPET+CLS RoBERTaL ADAPET ADAPET+CLS RoBERTaL ADAPET ADAPET+CLS

+CLS token +mixNLI token +mixNLI +CLS token +mixNLI token +mixNLI +CLS token +mixNLI token +mixNLI

Album 71 79 74 76 81 76 86 88 86 93 60 79 79 74 74
Animal 78 81 89 89 85 70 81 81 85 81 56 70 74 81 78
City 59 63 63 57 69 67 80 65 71 75 53 61 63 65 55
Country 78 75 83 64 78 56 67 64 61 72 56 69 72 58 67
Food&Drinks 96 88 88 88 88 67 75 75 71 79 83 88 79 71 71
Movie 85 75 83 80 80 75 85 70 82 73 62 75 80 73 80
Musician 87 78 84 83 88 86 90 85 89 89 75 83 79 78 78
Organization 83 50 100 75 92 58 75 50 83 75 58 58 58 50 50
Painting 78 81 81 81 85 93 93 93 96 93 78 89 85 78 85
Person 74 73 78 74 78 81 85 80 78 81 67 79 76 77 74
Others 71 69 82 69 80 64 78 69 73 73 49 73 69 67 60



CHAPTER 10

XINFOTABS: MULTILINGUAL

TABULAR INFERENCE

Adapted from B. Minhas, A. Shankhdhar, A. Gupta, D. Aggarwal, and S. Zhang, XIn-

foTabS: Evaluating multilingual tabular natural language inference, in Proceedings of the Fifth

Fact Extraction and VERification Workshop (FEVER), Dublin, Ireland, May 24, 2022, Asso-

ciation for Computational Linguistics, pp. 59–77.

The recent development of multi-lingual extensions of contextualizing models such

as mBERT [51] from BERT and XLM-RoBERTa [40] from RoBERTa, has led to substantial

interest in the problem of multi-lingual NLI and the creation of multi-lingual XNLI [42]

and TaxiXNLI [117] dataset from English MNLI [280] dataset. However, there is still no

equivalent multi-lingual NLI dataset for semi-structured tabular data. To fill this gap,

we propose XInfoTabS, a multi-lingual extension of InfoTabS dataset. The XInfoTabS

dataset consists of ten languages, namely English (‘en’), German (‘de’), French (‘fr’), Span-

ish (‘es’), Afrikaans (‘af’), Russian (‘ru’), Chinese (‘zh’), Korean (‘ko’), Hindi (‘hi’) and Ara-

bic (‘ar’), which belong to seven distinct language families and six unique writing scripts.

Furthermore, these languages are the majority spoken in all seven continents covering

2.76 billion native speakers in comparison to 360 million English language (InfoTabS)

speakers. Refer to Table 10.1 for more information.

The intuitive method of constructing XInfoTabS, i.e., human-driven manual transla-

tion, is too expensive in terms of money and time. Alternatively, various state-of-the-art

machine translation models, such as mBART50 [251], MarianMT [116], M2M100 [60], have

greatly enhanced translation quality across a broad variety of languages. Furthermore,

NLI requires simply that the translation models retain the semantics of the premises and

hypotheses, which machine translation can deliver [117]. Therefore, we use automatic

machine translation models to construct XInfoTabS from InfoTabS.
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Tabular data is far more challenging to translate than semantically complete and gram-

matical sentences with existing state-of-the-art translation systems. To mitigate this chal-

lenge, we propose an efficient, high-quality translation pipeline that utilizes Name Entity

Recognition (NER) and table context in the form of category information to convert table

cells into structured sentences before translation. We assess the translations via several

automatic and human verification methods to ensure quality. Our translations were found

to be accurate for the majority of languages, with German and Arabic having the most and

least exact translations, respectively. Table 10.2 shows an example from the XInfoTabS

dataset.

We conduct tabular NLI experiments using XInfoTabS in monolingual and multilin-

gual settings. By doing so, we aim to assess the capacity and cross-lingual transferabil-

ity of state-of-the-art multilingual models such as mBERT [51], and XLM-Roberta [40].

Our investigations reveal that these multilingual models, when assessed for additional

languages, perform comparably to English. Second, the translation-based technique out-

performs all other approaches on the adversarial evaluation sets for multilingual tabular

NLI in terms of performance. Thirdly, the method of intermediate-task finetuning, also

known as pre-finetuning, significantly improves performance by finetuning on additional

languages prior to the target language. Finally, these models perform admirably on cross-

lingual tabular NLI (tables and hypotheses given in different languages), although the

additional effort is required to improve them.

10.1 Contributions

We make the following contributions through this chapter 1:

1. We introduce XInfoTabS, a multi-lingual extension of InfoTabS, a semi-structured

tabular inference English dataset over ten diverse languages.

2. We propose an efficient pipeline for high-quality translations of semi-structured tab-

ular data using state-of-the-art translation models.

3. We conduct intensive inference experiments on XInfoTabS and evaluate the perfor-

mance of state-of-the-art multilingual models with various strategies.

1The dataset and associated scripts, is available at https://xinfotabs.github.io/.

https://xinfotabs.github.io/
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This work is published at FEVER 2022 workshop at ACL 2022 as [171]. We also con-

struct EI-InfoTabS: an English-Indic bilingual tabular natural language inference dataset

(TNLI), in which the tabular premise is in English language and hypothesis Indic lan-

guages. To create EI-InfoTabS we translate the textual hypotheses of the English TNLI

dataset InfoTabS into eleven major Indian languages. This work was published at NAACL

2022 as [4].

10.2 Background
Given the need for greater inclusivity towards linguistic diversity in NLP applications,

various multilingual versions of datasets have been created for text classification [42, 203,

290], question answering [8, 37, 138] and structure prediction [188, 211]. Following the

introduction of datasets, multilingual leaderboards like XTREME leaderboard [98], the

XGLUE leaderboard [147] and the XTREME-R leaderboard [228] have been created to test

models’ cross-lingual transfer and language understanding.

Multilingual models can be broadly classified into two variants: (a) Natural Language

Understanding (NLU) models like mBERT [51], XLM [41], XLM-R [40], XLM-E [32], Rem-

BERT [35], and (b) Natural Language Generation (NLG) models like mT5 [286], mBART [157],

M2M100 [59]. NLU models have been used in multilingual language understanding tasks

like sentiment analysis, semantic similarity and natural language inference while NLG

models are used in generation tasks like question-answering and machine translation.

10.2.1 Machine Translation

Modern machine translation models involve having an encoder-decoder generator model

trained on either bilingual [258] or a multilingual parallel corpus with monolingual pre-

training e.g. mBART [157] and M2M100 [59]. These models have been shown to work very

well even for low-resource languages due to cross-language transfer properties. Recently

auxiliary pertaining for machine translation models have garnered attention, with a focus

on autonomous quality estimation metrics [64, 241, 242]. As such, automatic scores like

the BERTScore [304], BLEURT [233] and COMET Score [216] have high human evaluation

correlation, are increasingly used to assess NLG tasks.
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10.3 Why the InfoTabS Dataset?
There are only two public datasets, both in English, available for semi-structured tab-

ular reasoning, namely TabFact [26] and InfoTabS [84]. We choose InfoTabS because it

includes multiple adversarial test sets for model evaluation. Additionally, the InfoTabS

dataset also includes the NEUTRAL label, which is absent in TabFact. The InfoTabS dataset

contains 2,540 tables serving as premise and 23,738 hypothesis sentences along with asso-

ciated inference labels. The table-sentence pairs are divided into development, and three

evaluation sets α1, α2, and α3, each containing 200 unique tables along with nine hypothesis

sentences equally distributed among three inference labels (ENTAIL, CONTRADICT, and

NEUTRAL). α1 is a conventional evaluation set that is lexically similar to the training data.

α2 has lexically adversarial hypotheses. And α3 contains domain topics that are not present

in the training set. The remaining 1,740 tables with corresponding 16,538 hypotheses serve

as a training set. Table 10.3 describes the inference performance of RoBERTaL model on

InfoTabS dataset. As we can see, the Human Scores are superior to that of RoBERTaL

model trained with TabFact representation. Since the XInfoTabS is translated directly

from the InfoTabS, we expect a similar human baseline for XInfoTabS.

10.4 Table Representation
Machine translation of tabular data is a challenging task. Tabular data is semi-structured,

non-sentential (ungrammatical), and succinct. The tight form of tabular cells provides

inadequate context for today’s machine translation models, which are primarily designed

to handle sentences. Thus, table translation requires additional context and conversion.

Furthermore, frequently occurring named entities in tables must be transliterated rather

than translated. Figure 10.1 shows the table translation pipeline. We describe our approach

to context addition and handling of named entities in detail in the following subsections

§10.4.1.

10.4.1 Table Translation Context

There are several ways to represent tables, each with its own set of pros and cons, as

detailed below:
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10.4.1.1 Without context

The most straightforward way to represent a table would be to treat every key (header)

and value (cell) as separate entities and then translate them independently. This approach

results in poor translations as the models have no context regarding the keys. The key

“Length” in English in context of Movies would correspond to “durée”, meaning duration in

French but in Object context, would correspond to “longueur”, meaning size or span. Thus,

context is essential for accurate table translation.

10.4.1.2 Full table

Before transferring data from the header and table cells to translation models, one may

concentrate and seam each table row using a delimiter such as a colon (”:”) to separate key

from value and a semi-colon (”;”) to separate rows [26]. This method provides full context

and completely translates all table cells. However, in practice, this strategy has two major

problems:

a. Length Constraint: All transformer-based models have a maximum input string

length of 512 tokens.2 Larger tables with tens of rows may not be translated using this

approach.3 In practice, strings longer than 256 tokens have been shown to have inferior

translation quality.4

b. Structural Issue: When a linearized table is directly translated, the delimiter to-

kens (”:” and ”;”) get randomly shifted.5 The delimiter counts are also altered. Hence,

the translation appears to merge characters from adjacent rows, resulting in inseparable

translations. Ideally, the key and value delimiter token locations should be invariant in a

successful translation.

2Recently, models bigger than 512 tokens have been developed, e.g. [10, 13], but no publicly accessible
long-sequence (> 512 tokens) multilingual machine translation model exists at the moment.

3Average # of rows in InfoTabS is: 8.8 for Train, Development, α1 and α2, and 13.1 for α3.

4 [182] raises a similar issue for NLI.

5Using ”—” instead of ”:” helps key-value separation.
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10.4.1.3 Category context

Given the shortcomings of the previous two methods, we devise a new strategy: we

add a general context that describes table rows at a high level to each linearized row cell.

We leverage the table category here, as it offers enough context to grasp the key’s meaning.

For the key “Focus” in Table 10.2, the category information Sports offers enough context

to understand its significance in relation to boxing. The context added representation for

this key-value pair will be ”Sports — Focus — Punching , Striking”. We use “—” delimiter

for separating the context, key, and value. Furthermore, multiple values are seperated by

“,”. Unlike full table translation, row structure is preserved since each row is translated

independently and no row surpasses the maximum token limit. We observe an average

increase of 5.5% in translation performance (cf. §10.5).

10.4.2 Handling Named Entities

Commercial translation methods, like Google Translate, correctly transliterate specified

entities (such as proper nouns and dates). However, modern open-source models like

mBART50 and M2M100 translate name entity labels, lowering overall translation quality.

For example, Alice Sheets is translated to Alice draps in French. We propose a simple

preprocessing technique to address the transliterate/translate ambiguity. First, we use the

Named Entity Recognition (NER) model6 [110] to identify entity information that must

be transliterated, such as proper nouns and dates. Then, we add a unique identifier in

the form of double quotations (” ”), e.g., “Alice Sheets”, and apply the translation model.

Finally, we delete the quotation mark (” ”) from the translated sentence after it has been

translated. This helps the models identify these entities easily due to their pre-training.

10.5 Translation and Verification
As mentioned previously, we now grasp how to represent a table. Consequently, these

reformatted tables can now be fed into reliable translation models. To accomplish this, we

assess many prominent multilingual (e.g., mBART50 [251] and M2M100 [61]) and bilingual

(e.g., MarianMT [116]) translation models as described below:

6spaCy NER tagger

https://spacy.io/api/entityrecognizer
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10.5.1 Multilingual Models

This category of models used includes widely used machine translation models trained

on a large number of languages such as mBART50 [251] which can perform translation

between any two languages from the list of 50 languages and M2M100 [61] which has

100 training languages. Apart from these models, we used Google Translate7 to compare

against our dataset translation quality.

10.5.2 Bilingual Models

Earlier studies have revealed that bilingual models outperform multilingual models

in machine translation of high-resource languages. Thus, for our experiments, we also

considered language-specific bilingual translation models in MarianMT [116] repository.

Because the MarianMT models were not available for a few languages (e.g., Korean (ko))

of XInfoTabS, we could not conduct experiments for some languages.

We also use an efficient data sampling technique to determine the ideal translation

model for each language, as detailed in the next section. The results for the translations

are shown in Table 10.4.

10.5.3 Translation Model Selection

Translating the complete InfoTabS dataset to find the optimal model is practically

infeasible. Thus, we select a representative subset of the dataset that approximates the

full dataset rather well. Finally, we use optimal models to translate the complete InfoTabS

dataset. The method used for making the subset is discussed in the Table Subset Sampling

Strategy and Hypothesis Subset Sampling Strategy sections given below:-

10.5.3.1 Table subset sampling strategy

In a table, keys can serve as an excellent depiction of the type of data included therein.

For example, if the key ”children” is used, the associated value is almost always a valid

Noun Phrase or a collection of them. Additionally, the type of keys for a given category

remains constant across tables, but the values are always different.8 This fact is used to

7https://translate.google.co.in/

8There are 2,163 unique keys in InfoTabS.

https://translate.google.co.in/
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sample a subset of diverse tables based on keys and categories. Specifically, we sample

tables for each category based on the frequency of occurrence of keys in the dataset to

guarantee diversity. The sum of the frequencies of all the keys in a table is computed for

each table. Finally, the top 10% of tables with the largest frequency sum in each category

are chosen to be included in the subset. In the end, we construct a subset with 11.14%

tables yet containing 90.2% of the all unique keys.

10.5.3.2 Hypothesis subset sampling strategy

To get a diverse subset of hypotheses, we employ Top2Vec [7] embedding for each

hypothesis, then use k-means clustering [112] to choose 10% of each cluster. Sampling

from each cluster ensures we cover all topics discussed in the hypothesis, resulting in a

subset of 2,569 hypothesis texts.

10.5.3.3 Model selection strategy

To choose the translation model that will be used to generate the language datasets,

we first translate the premise and hypothesis subsets for all languages using each of the

existing models, as described before. Following translation, we compute the various scores

detailed in Section 10.5.4. Finally, the model with the highest average of premise and

hypothesis translation Human Evaluation Score for the specified language is chosen to

translate the complete InfoTabS datasets.

10.5.4 Translation Quality Verification

With the emergence of Transformer-based pre-trained models, significant progress has

been made in automated quality assessment using semantic similarity and human sense

correlation [19] for machine translation evaluation. To verify our created dataset XIn-

foTabS, we use three automated metrics in addition to human ratings.

10.5.4.1 Paraphrase score (PS)

PS indicates the amount of information retained from the translated text. To capture

this, we estimate the cosine similarity between the original InfoTabS text and the back-

translated English XInfoTabS text sentence encodings. We utilize the all-mpnet-v2 [239]

model trained using SBERT [23] method for sentence encoding.
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10.5.4.2 Multilingual paraphrase score (mPS)

Different from PS, mPS directly uses the multilingual XInfoTabS text instead of the

English back-translated text to compare with InfoTabS text. We produce sentence encod-

ings for multilingual semantic similarity using the multilingual-mpnet-base-v2 model [86]

trained using the SBERT method.

10.5.4.3 BERTScore (BS)

BERTScore is an automatic score that shows high human correlation and has been a

widely used quality estimation metric for machine translation tasks [304].

10.5.4.4 Human evaluation score (HES)

We hired five annotators to label sampled subsets of 500 examples per model and

language. Human verification is accomplished by supplying sentence pairs and requesting

that annotators classify them as identical or dissimilar based on the meaning expressed by

the sentences.

10.6 Human Annotation Guidelines
We employed five undergraduate students proficient in English as human evaluation

annotators. They were presented with an instruction set with sample examples and an-

notations before the actual work. We paid the equivalent of 10 cents for every labeled

example. The study’s authors reviewed random annotations to confirm their quality.

Annotation Guidelines: We refer to the work by [126] while setting up our annotation

task and instruction guidelines. We gathered 500 table-sentence pairs representing original

(en) and back-translated (en) texts per model-language into several Google spreadsheets.

We had a total of 108 sheets (4 models, 9 languages, 3 Modes (table-keys, table-values, and

hypothesis) and hence 54000 annotation instances. Each sheet was assigned to a single

annotator, who was required to adhere to the semantic similarity task requirements, which

are outlined below:

1. The Semantic Similarity task requires the annotator to classify each sentence-pair as

conveying the same meaning (label 1) or conveying different meaning (label 0) than each

other.

2. In case their exists a difference of syntax including spelling mistakes, punctuation
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error or missing special characters, the annotators was asked to ignore these as long as the

sentence meaning is understandable (label 1). In case proper nouns were misspelled, the

annotator must judge the spellings as phonetically similar (label 1) or not (otherwise label

0).

3. The annotators were asked to be lenient on the grammar, allowing for active-passive

changes and tense change, if the sentences convey close to the same meaning i.e. (label 1).

4. In case acronyms or abbreviations were present in the sentences, the annotators were

asked to mark them as same (label 1) if the sentences had proper expansion/contractions.

5. In presence of numbers or dates, the annotators were asked to be extremely strict and

label even slightly differing dates or numbers like (XXXI v.s. 30) as completely different

(label 0).

6. In case of any further ambiguity, the judgement was left to the annotators human

far-sight as long as the adhere to the task definition.

We estimated the accuracy of human verification for every models and languages by

averaging the annotator labels.

Analysis: We arrive at an average language score of 85 for tables and 91 for hypotheses

for the final selected models in all languages. The results are summarised in Table 10.4.

These results are also utilized to determine the optimal models for translating the entire

dataset. MarianMT is used to create the entire dataset in German, French, and Spanish,

mBART50 is used to create the Tables dataset in Afrikaans, Korean, Hindi, and Arabic,

and M2M100 is used to create the entire dataset in Russian and Chinese, as well as the

hypothesis dataset in Afrikaans, Korean, Hindi, and Arabic.

10.7 Experiment and Analysis
In this section, we study the task of Multilingual Tabular NLI, utilizing our XInfoTabS

dataset as the benchmark for a variety of multilingual models with multiple training-

testing strategies. By doing so, we aim to assess the capacity and cross-lingual transfer-

ability of state-of-the-art multilingual models. For the inference task, we linearize the table

using the “Table as Struct”- TabFact described in InfoTabS.
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10.7.1 Multilingual Models

We use pre-trained multilingual models for all our inference label prediction exper-

iments. We use a multilingual mBERT-base (cased) [51] model pre-trained on masked

language modeling. This model will be referred to as mBERTBASE. The other model we

evaluated is the XLM-RoBERTa Large (XNLI) model [40], which is trained on masked

language modeling and then finetuned for the NLI task using the XNLI dataset. This

model is referred to as XLM-R Large (XNLI).

Hyperparameter: The XLM-RLARGE (XNLI) model was taken from HuggingFace9 mod-

els and finetuned using PyTorch Framework10 on Google Colaboratory11 which offer a

single P100 GPU. We utilized accuracy as our metric of choice, same as . We used Ada-

grad [144] as our optimizer with a learning rate of 1 ∗ 10−4. We ran our finetuning script

for ten epochs with a validation interval of 1 epoch, and early stopping callback enabled

with the patience of 2. Given the large model size, we had to use a batch size of 4.

The mBERTBASE (cased) model was trained on TPUv2 8 cores using the PyTorch Light-

ning12 Framework. AdamW [163] was our choice of optimizer with learning rate 5 ∗ 10−6.

We ran our finetuning script for ten epochs with a validation interval of 0.5 epochs, and

early stopping callback enabled with the patience of 3. Given the model’s small size, we

used a batch size of 64 (8 per TPU core).

Tables 10.5, 10.6, and 10.7 show the performance of the discussed multilingual models

for α1, α2, and α3 test splits respectively. Tables 10.6 and 10.7 show the results for all

baseline tasks on the Adversarial Validation Sets α2 and α3. On all three evaluation sets,

regardless of task type, the XLM-RoBERTaLarge model outperforms mBERT. This might be

because XLM-RoBERTa has more parameters, and is better pre-trained and pre-tuned for

the NLI task using the XNLI dataset.

9huggingface.co

10pytorch.org

11Google Colaboratory

12PyTorch Lightning

https://huggingface.co/
https://pytorch.org/
https://colab.research.google.com/
https://www.pytorchlightning.ai/
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10.7.2 Using English Translated Test Sets

We aim to investigate the following question: How would models trained on original 

English InfoTabS perform on English translated multilingual XInfoTabS?. We trained multi-

lingual models using the original English InfoTabS training set, and used the English 

translated XInfoTabS development set, and three test sets during the evaluation. Accord-

ing to Table 10.5, German has the best language-wise performance for α1. From Table 10.6, 

German, French, and Afrikaans have the highest average scores for α2. French and Russian 

have the best scores on α3 as shown in Table 10.7. Arabic has the lowest average of any 

language across all three test sets. Here, the model trained on English InfoTabS is being 

used for all the languages. Since the model is the same for all languages, the variation in 

performance only depends on English translation across XInfoTabS languages. On α2 and 

α3 sets, this task on average performs competitively against all other baseline tasks.

10.7.3 Language-Specific Model Training

In this subsection, we try to answer the question: Is it beneficial to train a language-specific 

model on XInfoTabS? In doing so, we finetune ten distinct models, one for each language 

on XInfoTabS. Comparing models on this task helps comprehend the model’s intrinsic 

multilingual capabilities for tabular reasoning. Among the language-specific models, En-

glish has the best language average in all three test sets, while Arabic has the lowest.

Additionally, there is a substantial variation in the quality of translation and model 

multilingualism competence. The high-resource languages often perform better since the 

pre-trained models have been trained on a larger amount of data from these languages. 

Surprisingly, §10.7.3 setting has lower average mBERT scores for all three splits than §10.7.2 

setting. The benefit of training the model in English seems to surpass any loss incurred 

during translating test sets into English. However, this is not the case with XLM-R(XNLI). 

The average scores increase substantially for α1 split in §10.7.3 setting compared to §10.7.2 

setting, decrease slightly for α2, and remain constant for α3. The α1 set improves due 

to its similar split to the train set, whereas the α2 set slightly worsens since it includes 

human-annotated perturbed hypotheses with labels flipped. Lastly, the α 3 set comprises 

tables from zero-shot domains i.e. unseen domain tables, so it remains constant. Our 

exploration of models’ cross-lingual transferability is provided in Appendix F.
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10.7.4 Fine-Tuning on Multiple Languages

Earlier findings indicate that fine-tuning multilingual models for the same task across

languages improves performance in the target language [201, 205, 268]. Thus, do models

benefit from sequential fine-tuning over several XInfoTabS languages? To answer it, we inves-

tigate this strategy of pre-finetuning in two ways, (a) by using English as the predominant

language for pre-finetuning, and (b) by utilizing all XInfoTabS languages to train a unified

model, .

10.7.4.1 Using English language

We fine-tune our models on the English InfoTabS and then on XInfoTabS in each

language individually. Thus, we train nine models in total, one for each multilingual

language (except English). English was chosen as the pre-finetuning language due to its

strong performance in the §10.7.3 paradigm and prior research demonstrating English’s

superior cross-lingual transfer capacity [201]. Across all three splits, the average score

improves from the §10.7.3 setting, demonstrating that pre-finetuning the English dataset

benefits other multilingual languages. The most significant gains are shown in lower

resource languages, notably Arabic, which improved by 3% for α1, 2% for α2, and 1%

for α3 in comparison to the §10.7.3 approach.

10.7.4.2 Unified model approach

We explore whether fine-tuning on other languages is beneficial, where we fine-tune a

single unified model across all XInfoTabS languages’ training sets and use it for making

predictions on XInfoTabS test sets. We observe that the finetuning language order affects

the final model performance if done sequentially. We find that training from a high to a

low resource language leads to the highest average accuracy improvement. This is due to

the catastrophic forgetting trait [80], which encourages training on more straightforward

examples first, i.e., those with better performance. Hence, we trained in the following

language order: en→ fr→ de→ es→ af→ ru→ zh→ hi→ ko→ ar.

We observe that the XLM RoBERTa Large model performs the best across all baseline

tasks in the α1 set. On average, this performance is comparable to English pre-finetuning.

While the accuracy of high resource languages remains constant or marginally declines

compared to the §10.7.3 setting, there is a substantial improvement in accuracy for low
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resource languages, particularly Arabic, which increases by 2%. It performs similarly

to English pre-finetuning. To conclude, more fine-tuning is not always beneficial for all

models, but it benefits larger models like the XLM-R Large. Models improve performance

for low-resource languages compared to the §10.7.3 setting (i.e., no pre-finetuning), but not

nearly as much as that of English-based pre-finetuning.

10.7.5 English Premise Multilingual Hypothesis

The premise of English’s multilingual hypothesis is practical, as it is frequently ob-

served in the real world. The majority of the world’s facts and information are written in

English. For instance, Wikipedia has more tables in English than in any other language,

and even if a page is available, it is likely that it missing an infobox. However, because

people are innately bilingual, inquiries or verification queries concerning these facts could

be in a language other than English. As a result, the task of developing cross-lingual

tabular NLI is critical in the real world.

To study this problem, we look at the following question: How effective are models with

premise and hypothesis stated in distinct languages? To answer this, we train the models using

the original InfoTabS premise tables in the English language and multilingual hypotheses

in XInfoTabS, i.e., nine languages. We note that XLM-R Large (XNLI) has the highest

accuracy for the α1 set. On average, the high-resource languages German, French, and

Spanish perform favorably across models, whereas Arabic underperforms. Both models

have shallow scores in German for the α2 set, which defy earlier observations. This might

be because the adversarial modifications in the α2 hypothesis might not be reflected in

the German translation. XLM-R Large has the highest accuracy on this set, with French

and Spanish being the most accurate languages. The models for the α3 validation set

demonstrate that language average accuracy is nearly proportional to the size of trans-

lation resources. However, the scores are marginally lower on average for the α2 set.

Surprisingly, models perform worse on average than with §10.7.3 setting on the α1 and

α2 sets while performing similarly on the α3 set. Except for α2 on German, the average

language accuracy changes are directly proportional to the language resource, implying

that the constraint could be translation quality; left for future study.
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10.7.6 Robustness and Consistency

In this part, we examine the findings for several languages and delve a little more into

the key disparities in performance across them. We compare the results of the experiments

for §10.7.3 setting for α1 set of best-performing language (en) with three languages - (a)

A high resource language (fr), (b) A mid resource language (af) and c) A low resource

language (hi). We compute four numbers for each of the languages (l) (where l is (fr), (af),

or (hi)) and (en) - the proportion of instances when (a) both are right, (b) both are erroneous

(c) correct (en) but incorrect (l), and (d) correct (l) but incorrect (en). We compute this

number overall as well independently for each of the inference labels, refer Figure 10.2.

We note that the majority of instances were correctly categorized in both English and all

three other languages. This is followed by the number of instances in which English and

all other languages categorised examples inaccurately. Additionally, we notice a greater

proportion of samples that are correctly identified by English but wrongly classified by

all other languages, as opposed to the contrary. Furthermore, the label NEUTRAL has the

highest proportion of correctly classified examples across all languages, whereas the label

CONTRADICT has the lowest.

In Figure 10.3, we notice that the CONTRADICT gets confused a lot with ENTAIL label

across all the languages. The difference between the accuracy for the CONTRADICT label

of French versus Afrikaans and Hindi can entirely be attributed to this sort of confusion.

Furthermore, ENTAIL gets quite confused with CONTRADICT.

In Figure 10.4, we also see the greatest language inconsistency with ENTAIL label go-

ing towards CONTRADICT across all the languages, though this inconsistency is least in

Afrikaans. The inconsistency for CONTRADICT label being predicted as ENTAIL is increas-

ing across resource size of languages from French having the least to Hindi having the

highest. Otherwise, the inconsistency across languages is rather low, showing that the

XLM-RLARGE model is quite consistent across languages.

In Table 10.8, we can observe that our model on average performs worst for all ENTAIL

belonging to Movie category, NEUTRAL and CONTRADICT belonging to City category. In

general, our model performs the worst for all hypothesis belonging to the City category

possibly because of the involvement of larger table sizes on average and highly numeric

and specific hypothesis statements as compared to the rest of the categories. Our models
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perform extremely well on all ENTAIL in FoodDrink category because of their smaller table

size on average and hypothesis requiring no external knowledge to confirm as compared to

CONTRADICT. For ENTAIL our model performs remarkably well on Organization category

for French, getting all the hypothesis labels correct. While for NEUTRAL, it performs well

for Paintings in French language. Lastly, it performs marginally well for CONTRADICT on

Hindi for Organization as compared to the highest performing category for CONTRADICT

in English i.e. the Movie category. All language averages perform in the order of their

language resource which is expected from Table 10.5.

Table 10.9 depicts a subset of the validation set which has been labeled based on dif-

ferent reasoning mechanisms that the model must employ to categorize the hypothesis

correctly. We found the reasoning accuracy scores for 4 languages along with human

evaluation score for comparison. Upon observation, we can see that regardless of lan-

guage, human scores are better than the model we utilize. The variation in language is

mostly minimal, but on average our model performs best for English. We notice that for

some reasoning types, like Negation and Simple Look-up, humans and the model get no

hypothesis right, showing the toughness of the problem. For Numerical based reasoning

as well as Coref type reasoning, our model comes very close to human score evaluation.

However, overall we are still far from human level performance at TNLI and much scope

remains to betterment of models on this task.

10.8 Discussion and Analysis
10.8.1 Extraction versus Translation

One straightforward idea for constructing the multilingual tabular NLI dataset is to

extract multilingual tables from Wikipedia in the considered languages. However, this

strategy fails in practice for several reasons. For starters, not all articles are multilingual.

For example, only 750 of the 2540 tables were from articles available in Hindi. The exis-

tence of the same title articles across several languages does not indicate that the tables

are identical. Only 500 of the 750 tables with articles in Hindi had infoboxes, and most of

these tables were considerably different from the English tables. The tables had different

numbers of keys and different value information.
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10.8.2 Human Verification versus Human Translation

We selected machine translation with human verification over hiring expert translators 

for several reasons: (a) Hiring bilingual, skilled translators in multiple languages is ex-

pensive and challenging, (b) Human verification is a  more straightforward classification 

task based on semantic similarity; it is also less erroneous compared to translation, (c) By 

selecting an appropriate verification sample size, we may further minimize the time and 

effort required for human inspection, (d) A competent translation system has no effect on 

the classification labels used in inference. As a result, the loss of the semantic connec-

tion between the table and the hypothesis is not a significant i ssue [ 117], and (e) Minor 

translation errors have no effect on the downstream NLI task label as long as the semantic 

meaning of the translation is retained [11, 39, 42, 117].

10.8.3 Usage and Future Direction

The dataset can be used to test benchmarks, multilingual models, and methods for tab-

ular NLI. In addition to language invariance, robustness, and multilingual fact verification, 

it may well be utilized for reasoning tasks like multilingual question answering [47]. The 

baselines can also be beneficial to understand models’ cross-lingual transferability.

Our current table structure does not generate natural language sentences and hence 

does not optimize the capabilities of a machine translation model. The representation of ta-

bles can be enhanced further by adding Better Paragraph Representation (BPR) from [182]. 

Additionally, NER handling may be enhanced by inserting a predetermined template 

name into the sentence post-translation, i.e. extracting a named entity from the original 

sentence, replacing it with a fixed template entity, and then replacing the named entity 

with the template post-translation. Multiple experiments, however, would be necessary 

to identify suitable template entities for replacement, and hence this is left as future work. 

Another approach is the extraction of keys and values from multilingual Wikipedia pages 

is also a challenging task and left as future work. Finally, human intervention can enhance 

the translation quality by either direct human translation or fine-grained post-translation 

verification and correction.
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10.9 Conclusion
We built the first multilingual tabular NLI dataset, namely XInfoTabS, by expanding

the InfoTabS dataset with ten different languages. This is accomplished by our novel

machine translation approach for tables, which yields remarkable results in practice. We

thoroughly evaluated our translation quality to demonstrate that the dataset meets the

acceptable standard. We further examined the performance of multiple multilingual mod-

els on three validation sets of varying difficulty, with methods ranging from the basic

translation-based technique to more complicated language-specific and intermediate task

finetuning. Our results demonstrate that, despite the models’ success, this dataset remains

a difficult challenge for multilingual inference. Lastly, we gave a thorough error analysis

of the models to comprehend their cross-linguistic transferability, robustness to language

change, and coherence with reasoning.
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Figure 10.1: Table translation pipeline (§10.4) with premise table “Boxing” (from InfoTabS)
translated into French.
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Figure 10.2: Predictions of XLM-RoBERTa for English versus (a) French, (b) Afrikaans, (c) Hindi.
The percentage on top in each block represents the average across all three labels with each label
percentage given below it in the order of ENTAIL, NEUTRAL and CONTRADICT (cf. §10.7.6).



202

C N E
French Predictions

C
N

E
Go

ld
 L

ab
el

s

22.78% 5.61% 4.94%

2.50% 27.06% 3.78%

6.89% 2.78% 23.67%

C N E
Afrikaans Predictions

C
N

E
Go

ld
 L

ab
el

s

20.94% 5.28% 7.11%

2.11% 27.06% 4.17%

6.06% 3.44% 23.83%

C N E
Hindi Predictions

C
N

E
Go

ld
 L

ab
el

s

20.61% 5.67% 7.06%

3.11% 26.28% 3.94%

6.89% 2.78% 23.67%

Figure 10.3: Confusion Matrix: Gold Labels versus predictions of XLM-R for (a) French, (b)
Afrikaans, (c) Hindi



203

C

E N

88.65, 89.82, 87.15

16
.44

, 1
2.6

7,
16

.89
8.5

5,
12

.83
, 2

4.3
1

5.51, 5.68, 7.18

7.54, 3.44, 7.09

80.86, 76.77, 75.28

76.02, 79.79, 76.02

5.84, 4.51, 5.68

10.59, 10.41, 10.41

Figure 10.4: Consistency graph for XLM-R (large) predictions of English versus (a) French (b)
Afrikaans (c) Hindi in that order respectively.



204

Table 10.1: Details regarding languages provided in the InfoTabS, from English to Arabic in
order of open-source translation resources, refer to OPUS.

Code Language Language Family Script Type # of Speakers

en English Germanic Latin 1.452 Billion
de German Germanic Latin 134.6 Million
fr French Romance Latin 274.1 Million
es Spanish Romance Latin 548.3 Million
af Afrikaans Germanic Latin 17.5 Million
ru Russian Balto-Slavik Cryllic 258.2 Million
zh Chinese Sinitic Hanzi 1.118 Billion
ko Korean Koreanic Hangul 81.7 Million
hi Hindi Indo-Aryan North-Indic 602.2 Million
ar Arabic Semitic Arabic 274.0 Million

Table 10.2: An example of the XInfoTabS dataset containing English (top-left) and French (top-
right) tables in parallel with the hypothesis associated with the table in five languages (below).

Boxing (en)

Focus Punching, striking
Olympic sport 688 BC (Ancient Greece),

1904 (modern)
Parenthood Bare-knuckle boxing
Country of origin Prehistoric
Also known as Western Boxing, Pugilism

See note.

Boxe (fr)

Focus Punching, frappe
Sport olympique 688 av. J.-C. (Grèce ancienne),

1904 (moderne)
Parentalité Bare-knuckle boxe
Pays d’origine Préhistorique
Aussi connu sous le nom Western Boxing,

Pugilism Voir note.

Language Hypothesis Label

English The modern form of boxing started in the late 1900’s. CONTRADICT
German Boxen hat seinen Ursprung als olympischer Sport, der vor Jahrtausenden begann. CONTRADICT
French La boxe occidentale implique des punches et des frappes ENTAIL
Spanish El boxeo ha sido un evento olı́mpico moderno durante más de 100 años. ENTAIL
Afrikaans Bare-knuckle boks is ’n prehistoriese vorm van boks. NEUTRAL

Table 10.3: Accuracy scores of the Table as Struct strategy on XInfoTabS subsets with
RoBERTaLARGE model, hypothesis only baseline and majority human agreement results. The first
three rows are reproduced from [84].

Model dev α1 α2 α3

Human 79.78 84.04 83.88 79.33
Hypo Only 60.51 60.48 48.26 48.89
RoBERTaLARGE 77.61 75.06 69.02 64.61

https://opus.nlpl.eu/
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Table 10.4: Table translation experiment results with Paraphrase Score (PS), Multilingual Para-
phrase Score (mPS), BERTScore (BS), Human Evaluation Score (HES), Language Average (LnAvg)
and Model Average (MdlAvg). We use the ”X | Y” format, where X and Y represent the Table and
hypothesis translation score respectively. Purple and Orange signifies the language average score
of the model selected for table and hypothesis translation respectively.

Model Metric de fr es af ru zh ko hi ar MdlAvg

MarianMT

PS 95 | 96 93 | 95 93 | 96 83 | 88 81 | 87 75 | 85 N.A. 56 | 55 60 | 79 80 | 85
mPS 92 | 95 87 | 96 90 | 96 83 | 84 78 | 84 79 | 83 N.A. 65 | 64 66 | 74 80 | 85
BS 93 | 94 91 | 94 92 | 94 84 | 89 81 | 87 73 | 85 N.A. 63 | 68 64 | 83 80 | 87

HES 95 | 87 92 | 86 92 | 94 70 | 56 84 | 54 75 | 59 N.A. 40 | 23 58 | 56 76 | 64
LnAvg 94 | 93 91 | 93 92 | 95 80 | 79 81 | 78 76 | 78 N.A. 56 | 53 62 | 73 79 | 80

mBART50

PS 94 | 96 93 | 95 86 | 87 88 | 92 89 | 87 81 | 87 83 | 82 85 | 82 70 | 77 85 | 87
mPS 92 | 96 90 | 96 72 | 92 85 | 91 81 | 88 79 | 84 86 | 83 79 | 81 80 | 80 83 | 88
BS 91 | 94 91 | 93 71 | 88 88 | 93 85 | 89 77 | 86 79 | 85 82 | 86 76 | 83 82 | 89

HES 93 | 84 91 | 81 82 | 80 89 | 69 87 | 69 76 | 61 76 | 54 79 | 70 71 | 53 83 | 69
LnAvg 93 | 93 91 | 91 78 | 87 88 | 86 86 | 83 78 | 80 81 | 76 81 | 80 74 | 73 83 | 83

M2M100

PS 89 | 96 92 | 94 88 | 95 91 | 94 89 | 90 83 | 82 83 | 92 83 | 88 72 | 77 86 | 90
mPS 88 | 96 88 | 96 88 | 96 84 | 92 83 | 88 80 | 86 84 | 90 81 | 87 78 | 92 84 | 91
BS 87 | 94 89 | 93 86 | 93 89 | 94 87 | 90 81 | 88 80 | 90 81 | 89 73 | 88 84 | 91

HES 88 | 85 86 | 86 84 | 86 86 | 83 87 | 74 79 | 72 70 | 82 75 | 73 60 | 51 79 | 77
LnAvg 88 | 93 89 | 92 87 | 93 88 | 91 87 | 86 81 | 82 79 | 89 80 | 84 71 | 77 83 | 87

GoogleTr

PS 91 | 94 94 | 93 92 | 93 96 | 95 79 | 86 80 | 83 87 | 89 90 | 85 60 | 81 85 | 89
mPS 89 | 94 88 | 94 88 | 94 82 | 87 82 | 86 80 | 86 83 | 87 77 | 80 71 | 81 82 | 88
BS 87 | 91 89 | 90 88 | 91 88 | 93 77 | 85 78 | 82 82 | 85 87 | 85 63 | 82 82 | 87

HES 91 | 79 93 | 81 89 | 83 96 | 81 84 | 66 79 | 56 79 | 70 92 | 74 65 | 70 85 | 73
LnAvg 90 | 90 91 | 90 89 | 90 91 | 89 81 | 81 79 | 77 83 | 83 87 | 81 65 | 79 84 | 84

Table 10.5: Accuracy for baseline tasks on the α1 set. Purple signifies the best task average accu-
racy, Orange signifies the best language average accuracy, Blue signifies the best model accuracy.
XLM-RLARGE represent XLM-RoBERTaLARGE (XNLI) model.

Train/Test Strategy Model en de fr es af ru zh ko hi ar ModAvg

English Translated Test mBERTBASE - 66 64 65 66 63 63 64 64 59 64
(§10.7.2) XLM-RLARGE - 73 73 72 72 72 71 69 70 62 70

Lang. Avg. - 70 69 69 69 67 67 67 67 61 68

Language Specific Training mBERTBASE 67 65 65 63 62 64 63 61 63 57 63
(§10.7.3) XLM-RLARGE 76 75 74 74 72 71 73 71 71 68 72

Lang. Avg. 72 70 69 68 67 67 68 66 67 63 68

Multiple Language Finetuning mBERTBASE - 64 66 64 64 64 65 63 62 62 64
Using Only English (§10.7.4A) XLM-RLARGE - 75 74 75 74 74 73 73 72 69 73

Lang. Avg. - 69 70 69 69 69 69 68 67 66 69

Multiple Language Finetuning mBERTBASE 65 64 64 64 64 63 64 62 62 59 63
Unified Model (§10.7.4B) XLM-RLARGE 76 75 74 75 73 74 74 73 72 70 74

Lang. Avg. 71 69 69 70 69 68 69 67 67 65 69

English Premise mBERTBASE - 63 63 64 62 61 61 59 61 60 61
Multilingual Hypothesis (§10.7.5) XLM-RLARGE - 73 73 73 72 72 73 72 71 68 72

Lang. Avg. - 68 68 68 67 67 67 66 66 64 67
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Table 10.6: Accuracy for baseline tasks on the α2 set. Purple signifies the best task average accu-
racy, Orange signifies the best language average accuracy, Blue signifies the best model accuracy.
XLM-RLARGE represent XLM-RoBERTaLARGE (XNLI) model.

Train/Test Strategy Model en de fr es af ru zh ko hi ar Model. Avg

English Translated Test mBERTBASE - 54 53 52 54 52 52 53 52 50 53
(§10.7.2) XLM-RLARGE - 67 66 64 65 65 63 63 63 58 64

Lang. Avg. - 60 60 58 60 59 58 58 58 54 59

Language Specific Training mBERTBASE 54 54 52 53 50 52 52 51 50 48 52
(§10.7.3) XLM-RLARGE 68 66 64 66 63 64 64 64 62 57 64

Lang. Avg. 61 60 58 60 57 58 58 58 56 53 58

Multiple Language Finetuning mBERTBASE - 53 54 51 53 53 53 52 51 50 52
Using Only English (§10.7.4A) XLM-RLARGE - 66 67 66 66 65 65 65 64 61 65

Lang. Avg. - 59 60 58 59 59 59 59 58 55 59

Multiple Language Finetuning mBERTBASE 53 51 53 53 52 51 53 50 50 49 52
Unified Model (§10.7.4B) XLM-RLARGE 66 64 64 63 64 64 64 63 63 60 64

Lang. Avg. 60 58 59 58 58 58 58 56 57 54 58

English Premise mBERTBASE - 49 53 53 51 49 49 50 47 50 50
Multilingual Hypothesis (§10.7.5) XLM-RLARGE - 63 65 65 64 65 65 63 63 61 64

Lang. Avg. - 56 59 59 57 57 57 57 55 55 57

Table 10.7: Accuracy for baseline tasks on the α3 set. Purple signifies the best task average accu-
racy, Orange signifies the best language average accuracy, Blue signifies the best model accuracy.
XLM-RLARGE represent XLM-RoBERTaLARGE (XNLI) model.

Train/Test Strategy Model en de fr es af ru zh ko hi ar Model. Avg.

English Translated Test mBERTBASE - 52 53 52 53 53 52 52 52 50 52
(§10.7.2) XLM-RLARGE - 65 65 64 63 64 62 62 61 57 63

Lang avg - 58 59 58 58 59 57 57 57 53 58

Language Specific Training mBERTBASE 52 50 52 53 50 50 51 48 49 49 50
(§10.7.3) XLM-RLARGE 67 65 62 64 62 62 63 60 62 57 62

Lang avg 60 58 57 58 56 56 57 54 56 53 56

Multiple Language Finetuning mBERTBASE - 52 50 52 52 51 51 49 49 48 50
Using Only English (§10.7.4A) XLM-RLARGE - 65 64 65 62 64 60 63 62 63 63

Lang avg - 59 57 58 57 57 56 56 56 54 57

Multiple Language Finetuning mBERTBASE 53 50 51 53 50 50 51 47 50 49 50
Unified Model (§10.7.4B) XLM-RLARGE 66 64 64 64 63 64 63 62 63 60 63

Lang avg 60 57 57 58 56 57 57 55 56 54 57

English Premise mBERTBASE - 51 50 51 50 50 47 45 48 48 49
Multilingual Hypothesis (§10.7.5) XLM-RLARGE - 63 63 64 62 62 62 60 61 60 62

Lang avg - 57 57 57 56 56 55 54 55 54 56
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Table 10.8: Category wise accuracy scores of XLM-R (large) for four languages: namely English
(En), French (Fr), Afrikaans (Af) and Hindi (Hi). Orange denotes the least score in the column and
Purple denotes the highest score in the column.

Categories ENTAIL NEUTRAL CONTRADICT
En Fr Af Hi Avg. En Fr Af Hi Avg. En Fr Af Hi Avg.

Person 79 71 75 73 74 82 81 78 81 81 59 67 54 56 59
Musician 88 77 78 76 80 87 87 91 82 87 70 69 60 69 67
Movie 70 63 57 63 63 85 93 85 87 88 81 76 78 65 75
Album 76 76 81 62 74 95 90 86 90 90 76 76 67 62 70
City 73 58 60 67 65 71 69 65 63 67 67 54 50 52 56
Country 74 61 65 63 66 74 70 76 76 74 74 72 76 69 73
Painting 83 79 75 67 76 83 96 92 83 89 71 71 71 71 71
Animal 79 75 79 79 78 75 58 83 67 71 71 75 67 58 68
Food&Drink 88 83 75 88 83 83 79 71 79 78 67 63 58 54 60
Organization 83 100 83 50 79 67 67 67 67 67 67 67 67 83 71
Other 75 73 67 73 72 73 84 84 75 79 76 68 71 62 69

Avg. 79 74 72 69 74 80 79 80 77 79 71 69 65 64 67

Table 10.9: Reasoning wise number of correct predictions of XLM-R (large) for four languages:
namely English (En), French (Fr), Afrikaans (Af) and Hindi (Hi) along with human scores for the
english dataset.

Reasoning ENTAIL NEUTRAL CONTRADICT
H.En En Fr Af Ko H.En En Fr Af Ko H.En En Fr Af Ko

Coref 8 6 6 6 4 22 19 19 20 19 13 10 9 7 8
Entity Type 6 5 5 5 5 8 6 6 6 6 6 6 6 4 5
KCS 31 21 19 17 22 21 20 17 19 18 24 18 17 17 20
Lexical Reasoning 5 4 4 4 3 3 2 2 2 1 4 1 1 1 1
Multirow 20 14 11 11 11 16 13 12 13 11 17 15 14 10 13
Named Entity 2 0 0 0 1 2 1 1 1 2 1 1 1 1 1
Negation 0 0 0 0 0 0 0 0 0 0 6 5 5 4 5
Numerical 11 10 7 8 8 3 3 2 3 2 7 5 6 4 4
Quantification 4 2 2 2 2 13 10 10 12 10 6 2 1 2 3
Simple Lookup 3 2 1 2 2 0 0 0 0 0 1 0 1 0 0
Subjective/OOT 6 3 4 4 3 41 37 35 36 37 6 3 4 2 3
Temporal 19 16 12 13 14 11 6 6 6 5 25 18 20 15 19



CHAPTER 11

CONCLUSIONS

In this chapter, we summarize contributions of this dissertation and discuss potential

directions for future work.

11.1 Summary
Overall, we address the challenges associated with semi-structured tabular data by

proposing effective methods for incorporating knowledge into reasoning models. Two

datasets, InfoTabS and Auto-TNLI, were introduced and used to improve reasoning in

the semi-structured, multi-domain, and heterogeneous nature of the premises. The pro-

posed approaches, including simple pre-processing strategies and leveraging structured

data knowledge graphs with a novel transformer knowledge Bi-LSTM (TransKBLSTM)

network, were effective in enhancing model performance and robustness on adversarial

tests. Furthermore, the we proposes a trustworthy tabular inference approach to improve

model reasoning and interpretability, along with a cost-effective pipeline for translating

tables (XInfoTabS) to enable tabular reasoning models to work in multiple languages.

This dissertation contributes to advancing the fields of natural language processing by

providing effective solutions for reasoning with semi-structured tabular data.

11.2 Looking Forward
In this section, we look at how this work can be further expanded upon.

1. Challenging Generation Tasks: To improve table generation tasks, we suggest de-

veloping zero-shot models that are tailored to specific table domains. Additionally,

we should explore harder tasks, like question generation and true/false inference

generation, which require multi-turn interactions. Rather than focusing solely on

extractive tasks with explicit reasoning, we should shift our focus towards more

abstractive tasks that involve implicit reasoning.
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2. Text to Table: Generating tables using language models, particularly LLMs, is a

promising approach, but there are challenges such as selecting important informa-

tion and structuring the table correctly [282]. This involve generating a schema

from the paragraph category or domain, using LLMs for key phrase extraction and

creating a LLM-based zero-shot QA model for the task. Additionally, we recommend

using a multimodal LLM that can process text and vision together for truthful gener-

ation. We recommend to investigating the use of generative models for more abstract

tasks that require implicit reasoning.

3. Zero-shot Benchmarks: To improve the performance of existing models and better

evaluate their capabilities, new tailored benchmarks are necessary for text-to-table,

table question answer, and inference generation. Innovative methods for querying

large language models, such as dialogue-based approaches [30, 145, 180], can capture

complex information in an organized way and generate more accurate responses.

Advanced models that can handle multi-turn tasks, like clarification-based dialogue

question answering, are needed, more complex data types [31], requiring complex

reasoning and decision-making capabilities and the ability to handle implicit reason-

ing tasks.

4. Knowledge Representation and Verification: To effectively communicate knowl-

edge, tables and text have their respective advantages and limitations. Tables are

concise but may contain implicit information, making them challenging to parse.

Text is more flexible but can be ambiguous. To address these challenges, we rec-

ommend exploring methods to convert between the two forms and integrating both

modalities to create a unified representation. Recent research on chart-to-table pre-

training has yielded positive results in this area [135, 152, 153]. Additionally, incor-

porating other sources such as knowledge graphs, captions, and contextual text can

provide additional context and enhance the accuracy of the information.

5. Handling Noisy Information: Handling noisy ground truth is a difficult challenge

that can be addressed through various solutions. One approach is to incorporate

multiple sources of information, such as knowledge graphs, captions, and text sur-

rounding the table. Another solution involves learning to generate missing infor-

mation from pre-trained knowledge while ignoring incorrect data. Type-based con-
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straints can be used to filter out problematic existing information, while outdated

information may require common sense or knowledge-based multi-expert models

for consistency checking. Multi-view expert models, where multiple models are

trained on different modalities, can act as fact verifiers to handle ambiguous cases.

Finally, multi-turn approaches with subsequent information correction may be more

effective than single-turn approaches.

6. Multiple Information Views: Future research should explore the integration of mul-

tiple modalities such as knowledge bases, databases, images, and videos with text

and tables [252]. This can be achieved by incorporating both general and common-

sense knowledge graphs to enhance reasoning capabilities. New approaches for

querying LLM models, such as dialogue-based methods, should also be considered.

Multimodal LLMs that can reason across multiple modalities, convert between them,

or utilize pre-training in specific cases are also promising areas for future research.

7. Domain-specific Information Extraction (IE) from semi-structured tables has sig-

nificant potential in unlocking valuable information in domains such as resumes,

financial and medical records, clinical reports, and scientific papers. Semantic infor-

mation in these domains can depend on table headers, making extraction challeng-

ing. Tables offer a more concise data representation than free text, which can be un-

structured. Key-phrase extraction (require NER, POS tagging, Dependency Parsing,

Mutual Bootstrapping for Patterns, and other IE techniques etc.) and is a promising

method for semi-structured IE, extracting relevant information from free-form text,

such as resumes. Effective methods for domain-specific IE from semi-structured

tables can unlock valuable insights, improving decision-making across applications.

There are significant challenges and opportunities in semi-structured data research 

that require the use of multiple modalities, advanced reasoning, and learning from noisy 

ground truth. These technologies have the potential to make a significant impact in various 

domains such as e-commerce, healthcare, and education. Therefore, this area of research 

is crucial for advancing natural language processing.

11.3 Open Problems
   This dissertation opens up new directions for research. Here I list some research 

questions that can be investigated by expanding upon the findings presented in this work.
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(a.) Dynamic Temporal Reasoning. Numerous data pieces about an entity evolve

and change throughout time. For instance, a city’s population, geographical coverage

or its official representatives change frequently. How do models reason about dynamic,

particularly temporally varying information? To enable consistent reasoning across time,

robust models must consider these temporal variations. I aim to address this challenge by

developing methods that leverage time-sensitive language models. Evaluating language

model for static temporal reasoning over paragraph and knowledge graph is studied in

the past [22, 53, 109, 181, 186, 230, 278, 309].

(b.) Reducing Information Gaps. Tables across different languages often have signif-

icant information gaps, such as the variation in an entity infoboxes between English and

French. Ho can models close the information gap across multilingual tables? To address

this challenge, we can utilize information editing techniques, including information align-

ment and updating, which can be achieved through the use of large language models.

Recently related problems of information editing are explored for article updating [102],

news editing [240], headline updation [191], and sentence updation [57, 235].

(c.) Navigating Multi-modal Information. My current work involves studying uni-

modal tables with simple text. It good to expand the semi-structured research to include

multimodal tables with text, symbols, images, and complex nested structures. How can

model reason on complex multimodal tables? We can address this question by work-

ing with pre-trained models that can analyze both visual and textual information. The

model should also account for visual variations, such as highlights, color changes, and

font variations. Recently efforts is been made to for similar work specifically on chart-table

QA/generation [135, 152, 153], QA on infographicVQA [166, 250], and image-table-text

generation [73, 248].

This dissertation research has shown although humans find reasoning on tabular data

easy, NLP models, which are primarily designed for unstructured text, struggle. Even

when these models appear to make correct inferences, they often do so for the wrong

reasons. To address this, models need to incorporate knowledge and focus on the relevant

parts of the tabular evidence. By tackling the broader problems of dynamic, multilingual,

and multi-modal information in semi-structured data, we can understand reasoning about

changing information, and more complex complex data types.



APPENDIX A

QUALITATIVE EXAMPLES

In this section, we provide examples where model is able to predict well after the

proposed modifications. We also provide some examples, where model struggles to make

the correct prediction after distracting row removal (DRR) modification.

A.1 BPR
Original Premise The Birth name of Eva Mendes are Eva de la Caridad Méndez. Eva Mendes was
Born on March 5, 1974 (1974-03-05) (age 44) Miami, Florida, U.S.. The Occupation of Eva Mendes are
Actress, model, businesswoman. The Years active of Eva Mendes are 1998 - present. The Partner(s) of
Eva Mendes are Ryan Gosling (2011 - present). The Children of Eva Mendes are 2.

Better Paragraph Premise Eva Mendes is a person. The birth name of Eva Mendes is Eva de la
Caridad Méndez. Eva Mendes was born on March 5, 1974 (1974-03-05) (age 44) Miami, Florida, U.S..
The occupation of Eva Mendes is Actress, model, businesswoman. The years active of Eva Mendes was
on 1998 - present. The partner(s) of Eva Mendes is Ryan Gosling (2011 - present). The number of children
of Eva Mendes are 2.

Hypothesis Eva Mendes has two children.

Result and explanation: In this example from α2, the model predicts Neutral for this

hypothesis with Original premise. However, forming better sentences by adding the ”num-

ber of children are 2” (highlighted as green) in case of CARDINAL type for the category

PERSON helps the model understand the relation and reasoning behind the children and

the number two and arrive at the correct prediction of entailment.

A.2 KG Implicit
Original Premise Janet Leigh is a person. Janet Leigh was born as Jeanette Helen Morrison (1927-
07-06) July 6, 1927 Merced, California, U.S. Janet Leigh died on October 3, 2004 (2004-10-03) (aged 77) Los
Angeles, California, U.S.. The resting place of Janet Leigh is Westwood Village Memorial Park Cemetery.
The alma mater of Janet Leigh is University of the Pacific. The occupation of Janet Leigh are Actress,
singer, dancer, author. The years active of Janet Leigh was on 1947-2004. The political party of Janet
Leigh is Democratic. The spouse(s) of Janet Leigh are John Carlisle (m. 1942; annulled 1942), Stanley
Reames (m. 1945; div. 1949), Tony Curtis (m. 1951; div. 1962), Robert Brandt (m. 1962). The children of
Janet Leigh are Kelly Curtis, Jamie Lee Curtis.

Hypothesis A Janet Leigh’s career spanned over 55 years long.
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Hypothesis B Janet Leigh’s career spanned under 55 years long.

Result and explanation: In this example from α2, the model without implicit knowl-

edge and the model with implicit knowledge addition predict the correct label on the

Hypothesis A. However for Hypothesis B which is an example from α2, and originally

generated by replacing the word ”over” to word ”under” in the Hypothesis A and flipping

gold label from entail to contradiction, the ealier model which is using artifacts over lexical

patterns arrive to predict the original wrong label entail instead of contradiction. On

adding implicit knowledge while training, the model is now able to reason rather than

relying on artifacts and correctly predicts contradiction. Note, that both hypothesis A and

hypothesis B require exactly same reasoning for inference i.e. they are equally hard.

A.3 DRR
Original Premise The pronunciation of Fluorine are (FLOOR-een, -in, -yn) and (FLOR-een, -in, -yn).
The allotropes of Fluorine is alpha, beta. The appearance of Fluorine is gas: very pale yellow , liquid:
bright yellow , solid: alpha is opaque, beta is transparent. The standard atomic weight are, std(f) of
Fluorine is 18.998403163(6). The atomic number (z) of Fluorine is 9. The group of Fluorine is group 17
(halogens). The period of Fluorine is period 2. The block of Fluorine is p-block. The element category
of Fluorine is Reactive nonmetal. The electron configuration of Fluorine is [He] 2s 2 2p 5. The electrons
per shell of Fluorine is 2, 7. The phase at stp of Fluorine is gas. The melting point of Fluorine is (F-2)
53.48 K (-219.67 °C, -363.41 °F). The boiling point of Fluorine is (F 2 ) 85.03 K (-188.11 °C, -306.60 °F). The
density (at stp) of Fluorine is 1.696 g/L. The when liquid (at b.p.) of Fluorine is 1.505 g/cm 3. The triple
point of Fluorine is 53.48 K, 90 kPa. The critical point of Fluorine is 144.41 K, 5.1724 MPa. The heat of
vaporization of Fluorine is 6.51 kJ/mol. The molar heat capacity of Fluorine is C p : 31 J/(mol·K) (at
21.1 °C) , C v : 23 J/(mol·K) (at 21.1 °C). The oxidation states of Fluorine is -1 (oxidizes oxygen). The
electronegativity of Fluorine is Pauling scale: 3.98. Fluorine was ionization energies on 1st: 1681 kJ/mol,
2nd: 3374 kJ/mol, 3rd: 6147 kJ/mol, (more). The covalent radius of Fluorine is 64 pm. The van der waals
radius of Fluorine is 135 pm. The natural occurrence of Fluorine is primordial. The thermal conductivity
of Fluorine is 0.02591 W/(m·K). The magnetic ordering of Fluorine is diamagnetic (-1.2×10 -4 ). The cas
number of Fluorine is 7782-41-4. The naming of Fluorine is after the mineral fluorite, itself named after
Latin fluo (to flow, in smelting). The discovery of Fluorine is André-Marie Ampère (1810). The first
isolation of Fluorine is Henri Moissan (June 26, 1886). The named by of Fluorine is Humphry Davy.

Distracting Row Removal (DRR) The first isolation of Fluorine is Henri Moissan (June 26, 1886).
The group of Fluorine is group 17 (halogens). The discovery of Fluorine is André-Marie Ampère (1810).
Fluorine was ionization energies on 1st: 1681 kJ/mol, 2nd: 3374 kJ/mol, 3rd: 6147 kJ/mol, (more).

HypothesisFlourine was discovered in the 18th century.

Result and explanation: In this example from the α3 set, removing distracting rows

(sentence except the one in green and blue) definitely helps as there are irrelevant distract-

ing noise and also make premise paragraph long beyond BERT maximum tokenization

limits. Before DRR is applied, the model predicts neutral due to a) distracting rows and
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b) required information i.e. relevant keys-rows highlighted as green being removed due

to maximum tokenization limitation (it’s second last sentence). However, after DRR, the

prune information retained is only the relevant keys highlighted as green and thus the

model is able to predict the correct label.

Negative example: In some examples distracting row removal for DRR remove an

relevant rows and hence the model failed to predict correctly on the DRR premise, as

shown below:

Original Premise Et in Arcadia ego is a painting. Et in Arcadia ego is also known as Les Bergers
d’Arcadie. The artist of Et in Arcadia ego is Nicolas Poussin. The year of Et in Arcadia ego is 1637 - 1638.
The medium of Et in Arcadia ego is oil on canvas. The dimensions of Et in Arcadia ego is 87 cm 120 cm
(34.25 in 47.24 in). The location of Et in Arcadia ego is Musee du Louvre.

Distracting Row Removal (DRR) Et in Arcadia ego is a painting. The artist of Et in Arcadia ego
is Nicolas Poussin. The medium of Et in Arcadia ego is oil on canvas. The dimensions of Et in Arcadia
ego is 87 cm 120 cm (34.25 in 47.24 in).

Hypothesis The art piece Et in Arcadia ego is stored in the United Kingdom .

Result and explanation: In this example from the Dev set, the DRR technique used

removes the required key ”Location” (highlighted in red) from the para representation.

Hence, the model here predicts neutral as the information regarding where the painting

is stored i.e. ”Location” is removed in the DRR, which the model require for making the

correct inference. While in original para, this information is still present and the model

is able to arrive at the correct label. Another interesting observation is RoBERTaL knows

Musee du Louvre is a museum in the United Kingdom, showing sign of world-knowledge.

Negative example: In another negative examples distracting row removal for DRR got

the relevant rows correct but still the model failed to predict correct label due to spurious

correlation, as shown below:

Original Premise Idiocracy is a movie. Idiocracy was directed by Mike Judge. Idiocracy was
produced by Mike Judge, Elysa Koplovitz, Michael Nelson. Idiocracy was written by Etan Cohen,
Mike Judge. Idiocracy was starring Luke Wilson, Maya Rudolph, Dax Shepard. Idiocracy was music
by Theodore Shapiro. The cinematography of Idiocracy was by Tim Suhrstedt. Idiocracy was edited
by David Rennie. The production company of Idiocracy is Ternion. Idiocracy was distributed by 20th
Century Fox. The release date of Idiocracy is September 1, 2006. The running time of Idiocracy is 84
minutes. The country of Idiocracy is United States. The language of Idiocracy is English. The budget of
Idiocracy is $2-4 million. In the box office, Idiocracy made $495,303 (worldwide).
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Distracting Row Removal (DRR) Idiocracy was directed by Mike Judge. Idiocracy was produced
by Mike Judge, Elysa Koplovitz, Michael Nelson. Idiocracy was written by Etan Cohen, Mike Judge.
Idiocracy was edited by David Rennie.

HypothesisIdiocracy was directed and written by the same person.

Result and explanation: In this example from the Dev set, the model before DRR

predicts the correct label but however on DRR, it predicts incorrect label of neutral. Despite

the fact that both the relevant rows require for inference (highlighted in green) is present

after DRR. This shows, that the model is looking at more keys than required in the initial

case, which are eliminated in the DRR, which force the model to change it prediction. Thus,

model is utilising spurious correlation from irrelevant rows to predict the label.

A.4 KG Explicit
Original Premise Julius Caesar was born on 12 or 13 July 100 BC Rome. Julius Caesar died on 15
March 44 BC (aged 55) Rome. The resting place of Julius Caesar is Temple of Caesar, Rome. The spouse(s)
of Julius Caesar are Cornelia (84-69 BC; her death), Pompeia (67-61 BC; divorced), Calpurnia (59-44 BC;
his death).

Original Premise + KG explicit Julius Caesar died on 15 March 44 BC (aged 55) Rome. The
resting place of Julius Caesar is Temple of Caesar, Rome. Julius Caesar was born on 12 or 13 July
100 BC Rome. The spouse(s) of Julius Caesar are Cornelia (84-69 BC; her death), Pompeia (67-61 BC;
divorced), Calpurnia (59-44 BC; his death). KEY: Died is defined as pass from physical life and lose all
bodily attributes and functions necessary to sustain life . KEY: Resting place is defined as a cemetery
or graveyard is a place where the remains of dead people are buried or otherwise interred . KEY:
Born is defined as british nuclear physicist (born in germany) honored for his contributions to quantum
mechanics (1882-1970) . KEY: Spouse is defined as a spouse is a significant other in a marriage, civil
union, or common-law marriage .

Hypothesis Julius Caesar was buried in Rome.

Result and explanation: In this example from α2, the model without explicit knowl-

edge predicts neutral for the hypothesis as it is not able to infer that resting place is where

people are buried, so it predicts neutral as it implicitly lack buried key understanding. On

explicit KG addition (highlighted as blue+ green), we add the definition of resting place

to be the place where remains of the dead are buried (highlighted as green). Now the

model uses this extra information (highlighted as green) plus the original key related to

death (highlighted in bold) to correctly infer that the statement Caesar is buried in Rome

is entailed.
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Table A.1: Prediction after BPR. Here, + represents the change with respect to the previous row.

Premise Label

Human Label (Gold) Entailed
Original Premise Neutral
+BPR Entailed

Table A.2: Prediction on Hypothesis A. Here, + represents the change with respect to the previous
row.

Premise Label

Human Label (Gold) Entailed
Original Premise Entailed
+ KG implicit Entailed

Table A.3: Prediction on Hypothesis B (from α2). Here, + represents the change with respect to
the previous row.

Premise Label

Human Label (Gold) Contradiction
Original Premise Entailed
+ KG implicit Contradiction

Table A.4: Prediction after DRR. Here, + represents the change with respect to the previous row.

Premise Label

Human Label (Gold) Contradiction
Original Premise Neutral
+DRR Contradiction

Table A.5: Prediction after DRR. Here, + represents the change with respect to the previous row.

Premise Label

Human Label (Gold) Contradiction
Original Premise Contradiction
+DRR Neutral

Table A.6: Prediction after DRR. Here, + represents the change with respect to the previous row.

Premise Label

Human Label (Gold) Entailed
Original Premise Entailed
+DRR Neutral
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Table A.7: Prediction after KG explicit addition. Here, + represents the change with respect to the
previous row.

Model Label

Human Label (Gold) Entailed
Original Premise Neutral
+ KG explicit Entailed



APPENDIX B

KNOWLEDGE INFOTABS TRANSKBLSTM

B.1 Hypothesis Attention Module
In Hypothesis attention module, we calculate hypothesis relation values by normal-

izing Rijk with respect to row-axis(2), to generate Rhyp
ik ∈ Rm×k which is the average

hypothesis relation for every premise word.

Rhyp
ik = ∑i = 1n Rijk

n

We reduce the dimension by applying the dot product attention.

Rr
ik = Fr

H(Rhyp
ik ) ∈ Rm×lk

Fr
N can again be a single layer neural network. We then use the Hypothesis attention head

to highlight the importance of the hypothesis and its relations to the premise. The context-

aware premise hidden state ps is used as queries, the hypothesis hidden state is used as

keys, and reduced hypothesis premise relation values are used. The attention function can

be defined as follows:

Attention(ps, hs, Rr
ik) = softmax(

pshsT
√

l
)Rr

ik

Then the multi-head attention is as follows:

patt
h = MH(ps, hs, Rr

ik)

= Concat(head1, ..., headh)Wo

where, headi = Attention(psWq
i , hsWk

i , RrikWv
i ) and Wq

i , Wk
i , and Wv

i are projection matrices

and i is the number of attention heads. The output patt
h ∈ Rm×lk is an attention-weighted

context matrix measuring the importance of premise and relations to each of the hypoth-

esis. We calculate patt
h ∈ Rm×lk , attention-weighted context matrix measuring the impor-
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tance of premise and relations to each of the hypothesis. We also extract Hatt, the attention

weights of the hypothesis multi-head attention.

B.2 Qualitative Examples
Tables B.1, B.2, B.3, B.4, and B.5 present examples to supplement the results presents in

Section 5.4.

B.3 Knowledge Relations to Sentence Conversion
We create templates to convert knowledge relations in ConceptNet & WordNet to nat-

ural language sentences. These templates resemble natural English text, which can be

encoded using pretrained language models. The templates can be seen in Table B.7.

B.4 Domain Analysis
To understand the models performance across tabular domains (i.e. RQ3(b)), we anal-

yse domain-wise table category results. We evaluate the twelve major categories con-

tained in the InfoTabS datasets. All remaining categories are grouped together in the

“Other” category. Table summarizes the performance of models (trained with 2% and 5%

InfoTabS train data)1 on the InfoTabS development set across several categories.

As the supervision increases from 1% to 10%, we observe an increasing accurate pre-

diction trend across the categories. Our proposed model shows significant improvements

in “Musician” and “Sports” categories. We attribute these huge gains to two main reasons:

(a) . Under minimal supervision, knowledge relations enable the model to concentrate on

relevant context, thus helping in establishing premise rows and hypothesis tokens con-

nections. For example refer to Table B.1. (b) and the acquisition of additional knowledge

enhances the models’ overall world knowledge and common sense reasoning capability.

E.g. in the Table 5.1, the understanding of the California is located at the coast.

Additionally, we observe that our proposed model performs poorly in a few categories.

This part comprises instances from “Album”, “Food & Drinks”, and “University”. This can

be attributed to the noisy addition of knowledge. Sometimes knowledge relations give

out the relational context that might not be needed. For example refer to Table B.2 in

1For details results on other percentages refer to Appendix §B.4 Table B.8.
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Appendix §B.2. Additional knowledge filtering may be addressed in future s tudies. For 

domain analysis results of models trained on 2% and 5% training data, refer to Table B.8.

B.5 Limited Supervision
We present detailed results on limited supervision experiments. All the reported num-

bers are average over three seed runs with a standard deviation of 0.233 (w/o KG), 0.49 

(KG Explicit), 0.5 (Tok-KTrans), and 0.30 (Trans-KBLSTM). All the improvements are sta-

tistically significant with p < 0.05 of one-tailed Student t-test.

B.6 Additional Results Reasoning Analysis
Table B.9 shows the results of our experiments, where we train under limited supervi-

sion setting on 1%, 3%, 5% and 10% data. Table B.10 detailed results of performance across 

reasoning keys for models trained on 1%, 3%, 5% and 10% data.

B.7 Training and Hyperparameters Details
Trans-KBLSTM is implemented in PyTorch [196] using Huggingface [281] implementa-

tion of RoBERTa [158]. We pretrain the transformer components on MultiNLI dataset [280] 

for fair comparison with the Knowledge-InfoTabS baseline of [182]. We use AdaGrad 

optimizer [56] with an initial learning rate of 1e-4 for RoBERTa and 1e-3 for non-RoBERTa 

i.e. LSTM parameters with a scheduler. The batch size is slected from {3, 4, 5}. All 

the hyper-parameters are fined tuned on the development set of InfoTabS. For more 

details about hyperparameters refer to the Table B.11.
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Figure B.1: The figures show error bar plots of limited supervision training on 1, 2, 3, 5, 
10 and 15% of data. for Trans-KBLSTM and RoBERTa baseline. We notice that the 
error overlap increases with increase in supervision. The improvements are higher 
under low-data regimes.
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Table B.1: In the absence of knowledge, the model is unable to understand the word
twenties and concludes that the information is not present in the text. However, addition of
knowledge re-enforces the connection between age and twenties thereby producing correct
label.

Joe Budden Premise

Premise Joe Budden was Born on ( 1980-08-31 ) August 31, 1980 (age 38) in New York, New York.
The Origin of Joe Budden are Jersey City, New Jersey. The Years active of Joe Budden
are 1999-present. The Labels of Joe Budden are Mood Muzik, EMPIRE (current), Desert
Storm, Def Jam, Amalgam Digital, and E1 (former)

Hypothesis Joe Budden started his career in his twenties.

Focused
Relation

age
Co−Hyponym←−−−−−−→ twenties

Gold Label Contradiction

Prediction

RoBERTa Neutral

Trans-KBLSTM Contradiction

Table B.2: The baseline prediction correctly predicts the gold label. Our proposed model gets
confused with semantically irrelevant relations and hence concludes the statement as contradiction.

Crooked Teeth Premise

Premise The Released of Crooked Teeth are May 19, 2017. The Studio of Crooked Teeth are
Steakhouse Studios, North Hollywood, CA. The Genre of Crooked Teeth are Hard rock,
nu metal, and rap rock. The Label of Crooked Teeth are Eleven Seven.

Hypothesis The album Crooked Teeth took over a year to make.

Focused
Relation

genre
Co−Hyponym←−−−−−−→make —— metal RelatedTo−−−−−→make —— rap

Hypernym−−−−−−→make

Gold Label Neutral

Prediction

RoBERTa Neutral

Trans-KBLSTM Contradiction
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Table B.3: The inference of the hypothesis requires the model to focus on 1st and 2nd sentences at
the same time. The original model gets confused due to mention of age 69 and young and concludes
contradiction. The focused relations develop appropriate connections to the first two sentences and
enable better understanding to the model.

Jeff Bridges Premise

Premise The Born of Jeff Bridges are December 4, 1949 (age 69) Los Angeles, California, U.S..
The Years active of Jeff Bridges are 1951-present. The Children of Jeff Bridges are 3. The
Family of Jeff Bridges are Beau Bridges (brother), and Jordan Bridges (nephew).

Hypothesis Jeff Bridges started his career as a young child.

Focused
Relations

born RelatedTo−−−−−→ young

born RelatedTo−−−−−→ child

child RelatedTo−−−−−→ age

active
Co−Hyponym−−−−−−−−→ child

Gold Label Entailment

Prediction

RoBERTa Contradiction

Trans-KBLSTM Entailment

Table B.4: The inference of the given hypothesis requires the knowledge of Synonymy between
Corn and Maize.

Chibuku Shake Premise

Premise The Type of Chibuku Shake shake are Opaque Beer. The Alcohol by volume of Chibuku
Shake shake are 3.3% to 4.5%. The Colour of Chibuku Shake shake are Tan-pink to white.
The Ingredients of Chibuku Shake shake are Sorghum, and Maize.

Hypothesis Corn is an ingredient found in a Chibuku Shake.

Focused
Relations

corn
Synonym←−−−→maize

Gold Label Entailment

Prediction

RoBERTa Entailment

Trans-KBLSTM Entailment
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Table B.5: The focused external knowledge relation connects the Monarchy in premise to Kingdom
in hypothesis.

Hashemite Kingdom of Jordan Premise

Premise The Legislature of Hashemite Kingdom of Jordan are Parliament. The Religion of
Hashemite Kingdom of Jordan are 95% Islam (official), 4% Christianity, and 1% Druze,
Baha’i. The Government of Hashemite Kingdom of Jordan are Unitary parliamentary
constitutional monarchy. The Monarch of Hashemite Kingdom of Jordan is Abdullah II.

Hypothesis Hashemite Kingdom of Jordan does not have any democracy.

Focused
Relation

Kingdom IsA←→Monarch

Gold Label Contradiction

Prediction

RoBERTa Neutral

Trans-KBLSTM Contradiction

Table B.6: Accuracy (%) across different categories observed in the Development set (Others
(¡10%) includes the categories, University, Awards, Event, Book and Aircraft), trained on 1%, 3%
and 5% samples of the data. w/o KG represents RoBERTa and w KG represents Trans-KBLSTM
model.

Category 1% 3% 10%
w/o KG w KG w/o KG w KG w/o KG w KG

Album 65.87 65.87 73.81 76.98 77.78 73.02
Animal 60.49 66.67 75.31 66.67 67.9 72.84
City 64.05 64.71 56.21 61.44 63.4 64.71
Country 56.48 54.63 56.48 55.56 60.19 62.96
Food & Drinks 69.44 70.83 72.22 73.61 83.33 79.17
Movie 61.11 63.89 63.89 63.89 70 73.89
Musician 62.57 69.88 73.1 74.56 75.73 76.9
Organization 61.11 58.33 55.56 66.67 69.44 72.22
Painting 80.25 80.25 75.31 77.78 77.78 80.25
Person 57 62.96 62.35 67.28 74.9 75.72
Sports 65.08 73.02 61.9 71.43 68.25 69.84
Others 63.89 65.28 66.67 70.84 63.89 61.11

TOTAL 62 65.83 65.88 68.61 72.27 73.22
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Table B.7: ConceptNet and Wordnet Relations with their Natural language templates.

KB Relation Natural Language KB Relation Natural Language

Antonym is opposite of Co-Hyponym is co-hyponym of
AtLocation is at location CapableOf is capable of
Causes causes CausesDesire causes desire to
CreatedBy is created by DefinedAs is defined as
DerivedFrom is derived from Desires desires
DistinctFrom is distinct from Entails entailes
EtymologicallyDerivedFrom is etymologically derived from HasA has a
ExternalURL external url FormOf is a form of
EtymologicallyRelatedTo is etymologically related to HasContext has context
HasLastSubevent has last subevent HasPrerequisite has prerequisite
HasProperty has property HasSubevent has subevent
InstanceOf is an instance of IsA is a
LocatedNear is located near MadeOf is made of
MannerOf is manner of MotivatedByGoal is motivated by goal
NotCapableOf is not capable of NotDesires does not desire
NotHasProperty does not have property PartOf is part of
ReceivesAction receives action RelatedTo is related to
SimilarTo is similar to SymbolOf is a symbol of
Synonym is same as UsedFor is used for
dbpedia/capital has capital dbpedia/field has field
dbpedia/genre has genre dbpedia/genus has genus
dbpedia/influencedBy is influenced by dbpedia/knownFor is known for
dbpedia/language has language dbpedia/leader has leader
dbpedia/occupation has occupation dbpedia/product has product
Hypernym is hypernym of Hyponym is hyponym of
HasFirstSubevent has first subevent

Table B.8: Accuracy (%) across different categories observed in the Development set (Others
(¡10%) includes the categories, University, Awards, Event, Book and Aircraft), trained on 2% and 5%
samples of the data. w/o KG represents RoBERTa baseline and w KG represents Trans-KBLSTM.

Category 2% 5%
w/o KG w KG w/o KG w KG

Album 68.25 67.46 72.22 73.81
Animal 65.43 64.20 72.84 69.14
City 55.56 58.17 60.13 61.44
Country 58.33 62.96 61.11 68.52
Food&Drinks 69.44 66.67 75.00 73.61
Movie 58.33 65.00 65.56 65.56
Musician 68.42 71.64 71.35 76.32
Organization 58.33 61.11 66.67 66.67
Painting 66.67 59.26 75.31 76.54
Person 61.32 60.49 68.72 67.08
Sports 66.67 69.84 61.90 68.25
Others 62.50 66.67 63.89 65.28

TOTAL 63.11 64.44 68.22 69.50
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Table B.9: Shows the results of of our experiments, where we train under limited supervision
setting. w/o KG Original RoBERTa baseline, KG Explicit KG-Explicit knowledge addition, Tok-
KTrans Token appended transformers, Trans-KBLSTM Proposed model. We train these models
on data samples 1, 2, 3, 5, 10, 15, 20, 25, 30, 50, 100 %s.

Model % Train Dev α1 α2 α3 % Train Dev α1 α2 α3

w/o KG

1%

66.05 63.81 64.00 62.59

2%

68.42 66.24 66.22 64.55
KG Explicit 65.15 63.22 62.24 60.63 66.70 65.07 63.77 62.11
Tok-KTrans 63.57 61.96 58.83 59.18 67.74 66.59 62.46 62.78
Trans-KBLSTM 68.03 65.18 64.83 64.12 69.72 67.02 66.51 65.36

w/o KG

3%

69.48 66.14 66.16 64.61

5%

70.50 67.44 67.33 65.18
KG Explicit 68.12 66.05 64.85 62.85 68.78 66.65 65.20 63.74
Tok-KTrans 67.52 66.57 63.98 64.07 69.44 67.31 65.14 63.53
Trans-KBLSTM 70.00 67.09 67.00 64.90 70.98 67.50 68.01 66.11

w/o KG

10%

72.23 69.27 68.14 66.27

15%

72.92 70.27 68.46 66.66
KG Explicit 70.68 68.77 67.07 64.70 72.05 70.16 67.37 65.05
Tok-KTrans 71.24 69.79 65.25 65.29 72.47 70.94 66.68 65.20
Trans-KBLSTM 72.51 70.18 68.40 66.77 73.61 70.96 68.90 67.29

w/o KG

20%

74.09 71.25 69.31 67.68

25%

74.50 72.25 68.90 67.53
KG Explicit 72.70 70.99 67.89 65.55 74.46 72.32 68.61 66.91
Tok-KTrans 73.05 70.77 67.72 65.94 74.44 72.79 68.22 66.83
Trans-KBLSTM 74.29 72.16 69.77 67.29 75.09 73.20 69.57 68.18

w/o KG

30%

74.70 72.86 69.61 67.55

50%

75.93 73.79 69.59 67.90
KG Explicit 74.83 72.26 68.69 66.89 75.99 74.05 70.36 68.51
Tok-KTrans 74.17 73.96 68.03 66.63 78.44 76.38 70.66 70.38
Trans-KBLSTM 75.57 74.25 69.62 67.57 76.71 74.86 70.68 68.93

w/o KG

100%

77.30 76.44 70.49 69.05
KG Explicit 78.97 77.84 71.13 69.58
Tok-KTrans 78.17 76.19 70.75 69.77
Trans-KBLSTM 79.73 78.92 71.62 70.21
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Table B.10: The above numbers represent accuracy on development dataset across different
reasoning types with varying percentage of data. The third number indicates the number of
examples corresponding to the reasoning type and label.

Data Reasoning
Keys

Entailment Neutral Contradiction
(%) B.L KtLSTM . B.L KtLSTM # B.L KtLSTM #

KCS 64.52 70.97 31 85.71 85.71 21 50.00 62.50 24
coref 50.00 62.50 8 81.82 68.18 22 30.77 15.38 13
entitytype 83.33 83.33 6 87.50 87.50 8 50.00 50.00 6
lexicalreasoning 40.00 60.00 5 33.33 33.33 3 25.00 25.00 4
multirowreasoning 60.00 75.00 20 68.75 75.00 16 52.94 47.06 17

1% nameidentity 0.00 0.00 2 0.00 100.00 2 100.00 100.00 1
negation 0.00 0.00 0 0.00 0.00 0 66.67 83.33 6
numerical 63.64 54.55 11 66.67 100.00 3 42.86 42.86 7
quantification 25.00 25.00 4 100.00 92.31 13 16.67 16.67 6
subjectiveoot 33.33 33.33 6 75.61 80.49 41 50.00 50.00 6
temporal 73.68 78.95 19 45.45 45.45 11 56.00 60.00 25

KCS 67.74 83.87 31 66.67 80.95 21 75.00 70.83 24
coref 37.50 50.00 8 54.55 63.64 22 53.85 53.85 13
entitytype 50.00 50.00 6 62.50 87.50 8 66.67 50.00 6
lexicalreasoning 60.00 80.00 5 33.33 66.67 3 75.00 75.00 4
multirowreasoning 60.00 70.00 20 56.25 68.75 16 76.47 76.47 17

3% nameidentity 50.00 100.00 2 100.00 100.00 2 100.00 100.00 1
negation 0.00 0.00 0 0.00 0.00 0 100.00 100.00 6
numerical 54.55 81.82 11 66.67 66.67 3 71.43 71.43 7
quantification 75.00 75.00 4 69.23 76.92 13 66.67 66.67 6
subjectiveoot 50.00 50.00 6 65.85 80.49 41 66.67 66.67 6
temporal 47.37 63.16 19 54.55 72.73 11 64.00 40.00 25

KCS 87.10 83.87 31 71.43 90.48 21 66.67 62.50 24
coref 75.00 62.50 8 68.18 81.82 22 30.77 30.77 13
entitytype 83.33 83.33 6 87.50 87.50 8 83.33 83.33 6
lexicalreasoning 60.00 80.00 5 33.33 66.67 3 50.00 50.00 4
multirowreasoning 85.00 85.00 20 68.75 81.25 16 58.82 76.47 17

5% nameidentity 100.00 100.00 2 50.00 100.00 2 100.00 0.00 1
negation 0.00 0.00 0 0.00 0.00 0 100.00 66.67 6
numerical 72.73 90.91 11 100.00 100.00 3 71.43 85.71 7
quantification 75.00 50.00 4 92.31 100.00 13 33.33 16.67 6
subjectiveoot 66.67 33.33 6 73.17 87.80 41 50.00 50.00 6
temporal 94.74 84.21 19 36.36 63.64 11 56.00 52.00 25

KCS 74.19 80.65 31 95.24 90.48 21 70.83 70.83 24
coref 50.00 75.00 8 77.27 77.27 22 46.15 23.08 13
entitytype 66.67 83.33 6 87.50 87.50 8 100.00 83.33 6
lexicalreasoning 80.00 80.00 5 66.67 66.67 3 25.00 75.00 4
multirowreasoning 80.00 80.00 20 81.25 81.25 16 76.47 70.59 17

10% nameidentity 50.00 50.00 2 100.00 100.00 2 100.00 100.00 1
negation 0.00 0.00 0 0.00 0.00 0 83.33 100.00 6
numerical 81.82 100.00 11 100.00 100.00 3 71.43 71.43 7
quantification 50.00 50.00 4 84.62 92.31 13 33.33 33.33 6
subjectiveoot 33.33 50.00 6 82.93 87.80 41 50.00 33.33 6
temporal 78.95 89.47 19 63.64 63.64 11 68.00 68.00 25
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Table B.11: Enlists the hyperparameters used while training the baselines and proposed model
on InfoTabS.

Hyperparameter Value

LSTM Max Length 200
LSTM layers 2
LSTM learning rate 1e-3
LSTM Hidden state size 128
Word Embedding Dimension 300
RoBERTa Hidden state size 768
RoBERTa learning rate 1e-4
# Attention heads 4
Embedding Spatial Dropout 0.3
Dropout (Final classification) 0.2



APPENDIX C

SYSTEMATIC PROBE ANNOTATION DETAILS

C.1 Manual Probing Human Annotation
We ask human annotators on Amazon Mechanical Turk to mark relevant rows for each

given table and hypothesis. We use the development and test sets (4× 1800 pairs) of the

InfoTabS dataset for this purpose. The templates with detailed instruction and examples

for the annotation is provided at https://tabprobe.github.io/.

Each HIT consists of three table-sentence pairs from the same table. Annotators are

asked to mark the rows which are relevant to the given hypothesis. Thus, each row was

considered as an independent option to select/not select, making this a multi-label selec-

tion annotation problem. Since many hypothesis sentences (especially ones with neutral

labels) use out-of-table information, we add an additional option of selecting out-of-table

(OOT) information, which is marked only when information not present in the table is

used in the hypothesis. We do not provide the labels to annotators to avoid any bias arising

due to correlation between the NLI label and row selections. One example of such bias is

always selecting/not selecting the OOT depending on the neutral/non-neutral labels.

We repeated the task 5 times for every hypothesis. For every row, we took the most

common label (relevant or not) as the ground truth. We also follow standard approaches

to improve annotation quality: We employed high-quality master annotators, released

examples in batches (50 batches including 2 pilot batches, each with 50 HITs, where each

HIT has 1 table with 3 sentences), blocked bad annotators and rewarded bonuses to good

ones.We used the degree of agreement between the annotator and the majority to identify

good and bad annotators.1 Furthermore, after every batch, we re-annotated examples with

poor consensus, and removed HITs corresponding to 452 pairs (3.6%) and 22 annotators

due to poor overall consensus. Our annotation scheme ensures that samples have at least

1The supplement at https://tabprobe.github.io/ has more details.

https://tabprobe.github.io/
https://tabprobe.github.io/
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5 diverse annotations each, as shown in Figure C.1. We ensure that annotators get paid

above minimum wage by timing the hits ourselves. The final cost of the whole annotation

was $1, 750 including the pilots, re-annotation, bonuses and any other expenses.

Table C.1 shows inter-annotator agreement via macro average F1-score w.r.t majority

for all the annotations, before and after post-annotation data cleaning. Detailed analysis

for each kappa bucket is shown in Table 7.2.

C.1.1 Pairwise Annotator Agreement

Table C.3 shows details for inter-annotator agreement for the relevant row annotation

task. We obtain an average F1-score of 89.0%(macro) and 88.6%(micro) for all our experi-

ments.

Figure C.2 shows fine-grained agreement i.e., the percentage of examples with varying

precision and recall. Figure C.1 shows the percentage of examples with number of anno-

tations (distinct annotators). Figure C.3 shows the percentage of examples pairs(y-axis)

verses number of annotations with the exact same labeling for the relevant rows(x-axis).

C.1.2 Human Bias with Information

Our annotation allows us to ask: Where the annotators who wrote the hypotheses in the

original data biased towards specific kinds of rows? We found that InfoTabS predominantly

has hypotheses which focus more on a some rows from the premise table than others;

on the other-side, some row keys are completely ignored. Of course, not all keys occur

equally in all tables, and therefore, we only consider keys that reoccur substantially and

frequently in the InfoTabS premise tables (i.e. not rare/uncommon keys). To account for

varying appearance frequency of keys in the tables, in all the analyses we only consider

keys which appear ≥180 times in the training set.

Figure C.4 shows the human bias problem with the InfoTabS annotations. For ENTAIL

and CONTRADICT labels rows keys such as born, died,years active, label, genres, release date,

spouse, occupation are overused. Similarly for the NEUTRAL label rows keys such as born,

associated act, and spouse are overused. On the other-side, for ENTAIL, NEUTRAL and CON-

TRADICT labels rows keys such as website, birth-name, type, origin, budget, language, edited

by, directed by, running time, nationality, cinematography are under used despite frequently

appearing in the tables. Some keys such as years active, label, genres, release date, spouse, and
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cinematography are underused only for the NEUTRAL label.

Although InfoTabS discusses the presence of hypothesis bias because of workers know-

ingly writing similar hypotheses, it does not discuss the possible bias based on usage of

the premise rows (keys) and its possible effects on model prediction. We suspect such bias

occurs because, during NLI data creation, annotators excessively use keys with numerical

and temporal values to create a hypothesis, as that makes samples easier and faster to

create. One possible approach to handle this data bias would be to force NLI data creation

annotators to write hypotheses using randomly selected parts of the premises.

C.2 Multi Row Reasoning
We also analyse the proportion of annotated examples using more than one row for

a given hypothesis, i.e. multiple row reasoning. As shown in Figure C.5 around 54%

and 37% examples have only one or two rows relevant to the hypothesis, respectively.

Furthermore, we find that annotators mark OOT mostly for the neutral labels i.e. 71%

compared to 5% for combined ENTAIL and CONTRADICT labels.2. We also find a very

negligible < 0.25% of examples have zero relevant rows; we suspect this might be because

of annotation ambiguity or the hypothesis being a universal factual statement. Overall our

annotation analysis verifies the claim made by InfoTabS [84] in their reasoning analysis.

2The marking of OOT for ENTAIL and CONTRADICT is mostly attributed to use of commonsense knowl-
edge.
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Figure C.1: Percentage of example pairs verses number of diverse annotations for the relevant
rows.

Figure C.2: Fine-grained agreement analysis showing the percentage of examples with given
precision and recall.
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Figure C.3: Percentage of example pairs (y-axis) verses number of annotations with the exact same
labeling for relevant rows (x-axis).

Figure C.4: Figure depicting the human bias problem with the annotations for the ENTAIL,
CONTRADICT and NEUTRAL label. Here, Green and Red circles represent overused and underused
keys by hypothesis, respectively.
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Figure C.5: Figure depicting the percentage of examples where multiple rows are relevant for a
given hypothesis for ENTAIL, CONTRADICT, NEUTRAL, and in total. It also shows the percentage
of examples where Out of Table(OOT) information is used.
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Table C.1: Macro average of the annotators’ agreement with the majority selection as the relevant
rows.

Cleaning #Anno Prec Recall F1-score

Before 72 87.39 87.86 87.51
After 50 88.86 89.63 89.15

Table C.2: Percentage of annotated examples for each Fleiss’ kappa bucket.

Agreement Range Percentage (%)

Poor < 0 00.17
Slight 0.01 – 0.20 01.53
Fair 0.21 – 0.40 05.88
Moderate 0.41 - 0.60 14.60
Substantial 0.61 - 0.80 24.40
Perfect 0.81 - 1.00 53.43

Table C.3: Final inter annotator agreement average of all example pairs for the majority selection
label w.r.t all the annotations for the pair.

Type Precision Recall F1-score

macro-avg 88.8 91.0 89.0
micro-avg 88.2 89.0 88.6



APPENDIX D

TRUSTWORTHY TABULAR INFERENCE

D.1 Qualitative Examples
We manually inspect the Type I and Type II error instances for the supervised model

and human annotation for the development set. Below, we show some of these examples

where models conflict with ground-truth human annotation. We also provide a possible

reason behind the model mistakes.

Type I: Below, we show Type I error examples.

Example I Row: Colorado Springs, Colorado is a poor training location for endurance athletes.

Hypothesis: The elevation of Colorado Springs, Colorado is 6,035 ft (1,839 m).

Model Prediction: Not Relevant
Human Ground Truth: Relevant Evidence.

Possible Reason: Model wasn’t able to connect the concept of elevation with the perfect high elevation
training ground requirement of endurance athletes. Requires common sense and knowledge.

Example II
Row: The number of number of employees of International Fund for Animal Welfare - ifaw is 300+
(worldwide).

Hypothesis: International Fund for Animal Welfare - ifaw is a national organization focused on only
North America.

Model Prediction: Not Relevant
Human Ground Truth: Relevant Evidence.

Possible Reason: Model wasn’t able to connect the clue (‘worldwide’) in the table row with the phrase
‘focused on only north America’.

Example III
Row: The equipment of Combined driving are horse, carriage, horse harness equipment.

Hypothesis: Combined driving is a horse racing event style.

Model Prediction: Not Relevant
Human Ground Truth: Relevant Evidence.

Possible Reason: Model wasn’t able to connect the horse related equipment i.e. ‘horse carriage, horse
harness’ with the event time i.e. ‘horse racing’.
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Type II. Below, we show Type II error examples.

Example I
Row: Dazed and Confused was directed by Richard Linklater.

Hypothesis: Dazed and Confused was directed in 1993.

Model Prediction: Relevant Evidence
Human Ground Truth: Not Relevant.

Possible Reason: Model focuses on lexical match token ‘directed’ instead using entity type where
premise refer for ‘Person’ who directed rather than ‘Date’ of direction.

Example II
Row: The spouse(s) of Celine Dion (CC OQ ChLD) is René Angélil, ( m. 1994; died 2016).

Hypothesis: Thérèse Tanguay Dion had a child that became a widow.

Model Prediction: Relevant Evidence
Human Ground Truth: Not Relevant.

Possible Reason: Model was unable to connect widow concept in hypothesis with it relation to Spouse
and the marriage date René Angélil, ( m. 1994; died 2016).

Example III
Row: The trainer of Caveat is Woody Stephens.

Hypothesis: Caveat won more in winnings than it took to raise and train him.

Model Prediction: Relevant Evidence
Human Ground Truth: Not Relevant.

Possible Reason: Model connects the ‘raise and train’ term with the trainer name which is unrelated and
has no connection to overall, winning races money vs spending for animal.

Discussion: Based on the observation from the above examples as also stated in §7.6.3, 

the model fails on many examples due to its lack of knowledge and common-sense reason-

ing ability. One possible solution to mitigate this is by the addition of implicit and explicit 

knowledge on-the-fly for evidence extraction, as done for inference task by [182].

D.2 Implicit Relevance Indication
We manually examine the human-annotated evidence in the development set. We 

discovered the existence of several relevant phrases/tokens which implicitly indicate the 

presence of evidence rows. E.g. The existence of tokens such as married, husband, lesbian, 

and wife in hypothesis (H) is very suggestive of the row Spouse being the relevant evidence. 

Learning such implicit relevance-based phrases and tokens connection is easy for humans 

and large pre-trained supervision models. It is a challenging task for similarity-based
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unsupervised extraction methods. Below, we show implicit relevance, indicating token

and the corresponding relevant evidence rows.

Relevance Indicating Phrase (H)→ Relevant Evidence Rows Key(T)

‘broked’, ‘started from’, ‘doesn’t anymore’, ‘still perform’, ‘over a decade’, ‘began performing’, ‘started
wrapping’, ’first started’→ year active

age related term, ‘were of ¡age¿’, ‘after ¡age¿’, ’fall’, ’spring’,’birthday’→ born

’several years’, ’one month’, century art→ years

‘co-wrote’, ‘written’, ‘writer’, ‘original written’→ written by (novel and book)

‘married’, ‘husband’, ‘lesbian’, ‘wives’→ Spouse

‘no-reward’, ‘monetary value’, ‘prize’→ rewards

‘earlier’, ‘debut’, ‘21st century’, ‘early 90s’, ‘recording’,‘product of years’→ recorded

‘lost’, ’won’, ’races’,’competition’→ records (horse races, car races etc) ’sea level’→ ’lowest elevation’,

’highest elevation’, ’elevation’

multi-lingual, multi-faith→ ’regional languages’, ’official languages’, ’religion’, ’,’race or faith’

‘acting’, ‘rapping’, ‘politics’→ occupation

‘over an’, ‘shortest’, ‘longest’, ‘run-time’→ length ‘is form ¡country¿’, ’originate’, ‘are an ¡nationality¿’,

‘formed on ¡location¿’, ’moved to ¡Country¿’, ‘descended from’→ origin, descendant, parenthood etc

’city’ with ’x’ peoples→ ’metropolitan municipality’ or ’metro’

‘was painted with’, ‘mosaic’, ‘oil’, ‘water’→medium

‘hung in’ , ‘museum’, ‘is stored in/at’, ‘wall’, ‘mural’→ ’location’

‘was discontinued’, ‘awards’→ ‘last awarded’

’playing bass’→ ’instruments’

‘served’, ‘term’, ‘current charge’ , ‘in-charge’→ ’in office’

‘is controlled by’, ‘under control’→ ’government’

‘classical’, ‘pop’, ‘rock’, ‘hip-hop’, ‘sufi’→ genre

‘won more’, ‘in winning (race)’, ‘earned more than’→ earnings

‘Register of’, ‘Cultural Properties’→ designated

‘urban area’, ‘less dense’ -¿ urban density, density

‘founded by’, ‘has been around’, ‘years’→ founded , introduce

‘was started’, ‘century’, ‘was formed’, ’100 years’→ founded, formation

‘daughters’, ‘sons’→ children spouse(s), partner(s)

‘lost money’, ‘net profit’, ‘budget’, ‘unprofitable’, ’not popular’(common sense)

‘owned’ or ‘company’→manufacturer

‘bigger than an average’→ dimension



APPENDIX E

TABULAR AUGMENTATION: 

ALBERTA PERFORMANCE

We perform a similar analysis on ALBERTBASE as we have done for RoBERTaBASE 

to see if our data benefits there too. To see how robust Auto-TNLI is when improving 

performance in the Augmentation setting, we perform the same experiments as RQ2a in 

Section 8.6.3. We also explore some experiments from RQ1b in Section 8.6.2 which are 

shown in Table E.1.

Analysis: As we can see in Tables E.2, E.3, and E.4, the trends are very similar to what 

we have seen in main paper Section 8.6.3 for full supervision setting. Thus our approach 

of semi-automatic generation is generalizable across similar models.
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Table E.1: Performance (accuracy) on Auto-TNLI with ALBERTBASE model across several
evaluation splits with fine-tuning on Auto-TNLI. bold - represents max across rows i.e. best
train/augmentation setting.

Augmentation Strategy Cat-Ran Cross-Cat Key No-Para Cross-Para Entity

Random 50.00 50.00 50.00 50.00 50.00 50.00
Auto-TNLI 77.16 69.73 81.91 86.22 87.45 72.75
MNLI +Auto-TNLI 80.28 76.24 83.1 88.73 87.44 74.53

Table E.2: Performance (accuracy) of stage one ALBERTBASE (i.e. NEUTRAL verses NON-
NEUTRAL) across several data augmentation settings. Here, No-Augmentation means InfoTabS,
and MNLI means MNLI + InfoTabS. bold same as Table 8.12.

Test-split No-Augmentation MNLI

dev 79.11 85.22
α1 78.61 82.83
α2 80.89 85.22
α3 67.78 73.94

Table E.3: Accuracy of combine stage I i.e. NEUTRAL verses NON-NEUTRAL and stage II i.e.
ENTAIL verses CONTRADICT classifiers (ALBERTBASE) across several data augmentation settings.
Here, for stage one we also explore pre-fine tuning on MNLI data. bold - represents max across
columns i.e. the best augmentation setting.

Stage 2: Entail verses Contradict
MNLI MNLI

Split No Augmentation Orig Orig+Count MNLI+Orig MNLI+Orig+Count
Stage 1: InfoTabS

dev 60.78 61.72 62.83 64.83 63.89
α1 60.89 61.33 62.78 63.22 63.11
α2 49.83 53.06 51.67 55.67 56.5
α3 49.39 50.11 51.72 52.94 51.72

Stage 1: MNLI +InfoTabS
dev 66.28 67.44 68.22 70.67 69.61
α1 65.72 66.06 67.28 67.44 67.5
α2 54 56.72 55.83 60.11 60.89
α3 53.33 55.11 56.11 57.39 56.94

Table E.4: Accuracy of stage II i.e. ENTAIL verses CONTRADICT classifiers (ALBERTBASE) across
several data augmentation settings. bold same as Table 8.12.

MNLI MNLI
Split No Augmentation Orig Orig+Count MNLI+Orig MNLI+Orig+Count
dev 68.92 71.25 72.33 76 74.5
α1 69.42 70.92 72.92 73.92 73.25
α2 47.58 52.75 50.83 58.17 58.67
α3 61 64.17 66.33 68.33 68.08



APPENDIX F

XINFOTABS: CROSS LINGUAL TRANSFER

We are also interested in knowing whether training in one language can help transfer 

knowledge across other languages or not. We answer the question: What are models of 

cross-lingual transfer performance?. Since we have separate models trained on languages 

from our dataset available, we tested them on all other languages other than the train-

ing language to study cross-lingual transfer. The TrLangAvg scores (Training Language 

Average) from Tables F.1, F.2 and F.3 show how models trained on InfoTabS for one lan-

guage perform on other languages for α1, α2 and α3 sets respectively. XLM-R (XNLI) 

outperforms mBERT across all tasks. English has the best cross-lingual transferability on 

mBERT, whereas Spanish has the best cross-lingual transferability on XLM-R(XNLI) for 

the α1 set. On mBERT, German has the best cross-lingual transferability for the α2 dataset. 

On XLM-R (XNLI), German and Spanish have the best cross-lingual transferability. On 

mBERT, English has the best cross-lingual transferability for the α3 dataset. On XLM-R 

(XNLI), English and Spanish have the best cross-lingual transferability. Furthermore, the 

EvLangAvg score (Evaluation Language Average) score was comparable for all languages 

except approximately 4% lower for Arabic (’ar’) language with XLM-R(XNLI) model on 

all three test sets. Overall, we observe that finetuning models on high resource languages 

improve their cross-lingual transfer capacity considerably more than finetuning models on 

low resource languages.
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Table F.1: Evaluation of cross lingual transfer abilities of models on α1 evaluation set. TrLang
refers to the language the model has been finetuned on and EvLang refers to the language the
model has been evaluated on. Purple, Orange and Blue represent the highest score in the row,
column and both together respectively.

Test-Split Model TrLang en de fr es af ru zh ar ko hi TrLangAvg

α1

mBERTBASE

en 67 64 63 62 61 61 60 56 58 58 61
de 63 65 61 62 60 59 57 56 56 57 60
fr 64 62 65 62 61 59 59 55 53 57 60
es 62 62 63 63 61 60 60 57 57 58 60
af 62 61 61 60 62 59 57 55 55 55 59
ru 63 61 61 60 59 64 59 56 55 55 59
zh 55 56 58 56 59 57 63 55 57 58 57
ar 57 58 58 57 58 58 57 57 53 57 57
ko 58 59 58 57 57 56 58 55 61 57 58
hi 59 58 59 58 57 58 58 56 54 63 58

EvLangAvg 61 61 61 60 60 59 59 56 56 58 59

XLM-R (XNLI)

en 76 73 71 73 71 71 71 63 70 69 71
de 74 75 74 72 71 70 69 63 71 68 71
fr 73 74 74 72 72 70 71 64 70 70 71
es 74 73 74 74 72 71 72 65 71 69 72
af 72 72 71 71 72 70 70 63 70 68 70
ru 73 73 72 71 71 71 71 64 70 67 70
zh 72 72 70 71 70 69 73 64 70 69 70
ar 71 71 70 70 69 70 71 68 70 68 70
ko 72 71 72 71 70 69 71 64 71 69 70
hi 73 73 71 72 70 70 70 64 69 71 70

EvLangAvg 73 73 72 72 71 70 71 64 70 69 70
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Table F.2: Evaluation of cross lingual transfer abilities of models on α2 evaluation set. TrLang
refers to the language the model has been finetuned on and EvLang refers to the language the
model has been evaluated on. Purple, Orange and Blue represent the highest score in the row,
column and both together respectively.

Test-Split Model TrLang en de fr es af ru zh ar ko hi TrLangAvg

α2

mBERTBASE

en 54 53 53 53 51 52 50 49 50 47 51
de 54 54 53 53 52 52 50 49 50 48 52
fr 52 51 52 53 50 50 48 49 51 47 50
es 52 50 50 53 47 51 48 49 46 46 49
af 49 50 50 49 50 50 47 48 48 46 49
ru 51 50 51 51 51 52 49 49 49 49 50
zh 49 48 49 48 49 49 52 47 48 48 49
ar 49 48 49 48 47 48 47 48 47 47 48
ko 49 49 50 48 48 47 50 47 51 49 49
hi 48 47 47 48 48 49 48 46 48 50 48

EvLangAvg 51 50 50 50 49 50 49 48 49 48 50

XLM-R (XNLI)

en 68 65 64 64 64 63 62 58 63 59 63
de 67 66 66 65 64 63 62 57 64 61 64
fr 67 64 64 65 62 60 60 58 62 60 62
es 67 66 65 66 63 64 62 57 64 61 64
af 66 64 64 64 63 62 63 57 62 59 62
ru 66 64 64 63 62 64 62 57 61 60 62
zh 67 65 65 64 63 64 64 58 64 61 62
ar 64 61 62 61 60 60 60 57 60 58 60
ko 65 63 63 63 61 62 62 57 64 59 62
hi 67 64 65 65 63 64 62 58 60 62 63

EvLangAvg 66 64 64 64 63 63 62 57 62 60 63
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Table F.3: Evaluation of cross lingual transfer abilities of models on α3 evaluation set. TrLang
refers to the language the model has been finetuned on and EvLang refers to the language the
model has been evaluated on. Purple, Orange and Blue represent the highest score in the row,
column and both together respectively.

Test-Split Model TrLang en de fr es af ru zh ar ko hi TrLangAvg

α3

mBERTBASE

en 52 52 51 53 49 50 49 47 46 47 50
de 50 50 51 50 51 48 48 44 46 48 49
fr 52 52 52 53 50 50 49 46 44 47 50
es 50 50 51 53 48 48 46 46 46 46 50
af 50 50 50 51 50 49 47 47 45 48 49
ru 50 48 49 50 49 50 47 45 45 46 48
zh 49 49 50 50 49 50 51 46 48 49 49
ar 49 49 49 49 48 49 48 49 47 48 48
ko 47 46 47 47 44 45 45 43 48 48 46
hi 50 49 49 49 48 46 48 46 47 50 48

EvLangAvg 50 49 50 50 49 48 48 46 46 48 49

XLM-R (XNLI)

en 67 65 61 64 62 64 63 58 65 62 63
de 65 65 63 61 63 63 61 56 61 60 62
fr 66 64 62 63 62 61 61 56 60 62 62
es 66 65 63 64 63 63 62 59 61 62 63
af 65 64 61 62 62 60 61 56 60 59 61
ru 65 63 61 62 62 62 61 56 60 62 61
zh 65 64 62 63 62 62 63 57 62 60 62
ar 63 62 62 61 61 60 60 57 60 60 61
ko 64 62 61 62 60 63 61 56 60 62 61
hi 64 63 62 63 61 61 60 58 60 62 61

EvLangAvg 65 64 62 63 62 62 61 57 61 61 62
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