Unsupervised Contextualized Document Representation

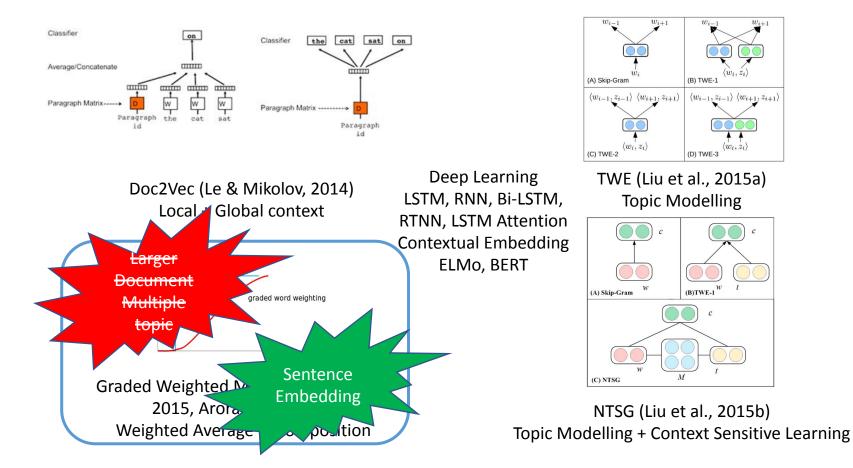
Ankur Gupta Vivek Gupta Vivek Gupta Indian Institute of Technology Kanpur School of Computing, University of Utah

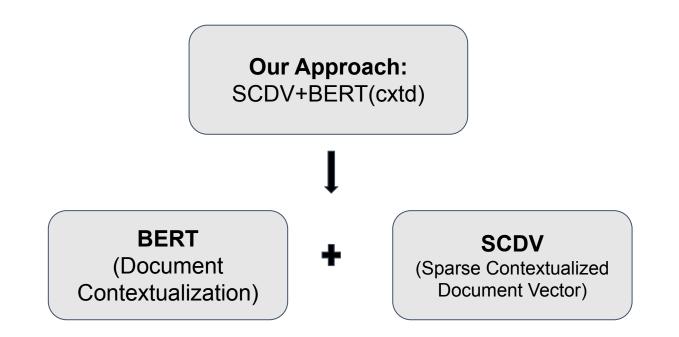
Second Workshop on Simple and Efficient Natural Language Processing (SustaiNLP 2021), EMNLP 2021

Motivation

- Natural language requires good semantic representations of **textual documents**
 - Text Categorization
 - Information Retrieval
 - Text Similarity
- Good semantic representation of words exists, i.e., **Word2vec (SGNS, CBOW)** created by Mikolov et al., **Glove** (Socher et al.) and many more.
- What About Documents?
 - Multiple Approaches based on local context, topic modelling, context sensitive learning
 - Semantic Composition in natural language is the task of modelling the meaning of a larger piece of text (*document*) by composing the meaning of its constituents/parts (*words*).
 - Our work focus on using simple semantic composition

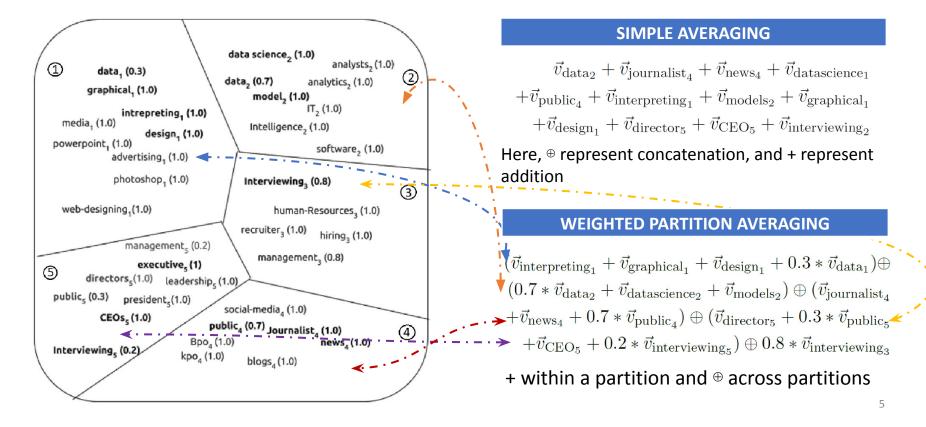
Efforts for Document Representation



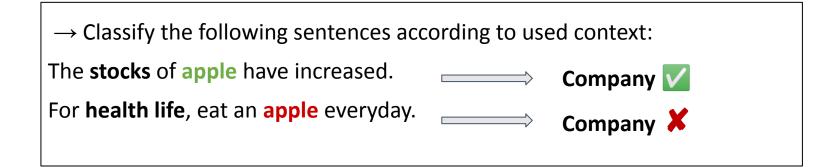


SCDV : Averaging vs Partition Averaging

"Data journalists deliver the news of data science to general public, they often take part in interpreting the data models, creating graphical designs and interviewing the director and CEOs."



Document Contextualization (Using BERT)



Raw Docs

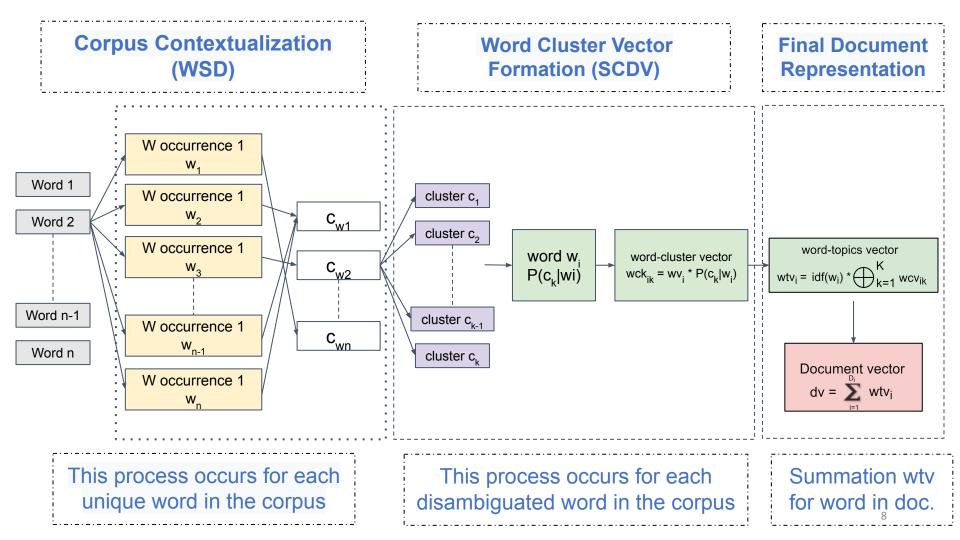
Messi scored a penalty! Judge passed the order of ... The court issued a penalty

Contextualized Docs

Messi scored a **penalty\$1**! Judge passed the order of ... The **court\$1** issued a **penalty\$0**

Document Contextualization (Using BERT)

- Use K-Means algorithm (Jain and Dubes, 1988) to cluster all the BERT contextualized representations of all occurance of the word.
- Cluster centers are **symbolic representations** of several **meaning of a word** in different contexts it can occur in the corpus across documents.
- Why K-Means?
 - It is **efficient**, needed as **clustering** for **all vocabulary words**.
 - **Cosine similarity = Euclidean distance** for unit norm vectors.
- Cluster similarity **threshold is a hyperparameter** of our algorithm.



Multi-Class Classification – 20NewsGroup (40-80 words)

Model	Accuracy (↑)	Precision (↑)	Recall (↑)	F1-Score (↑)
SCDV+BERT	86.9	86.4	86.1	86.3
(cxtd) + Anisotropy				
SCDV + word2vec	84.6	84.6	84.5	84.6
BERT (pr)	84.9	84.9	85.0	85.0
BoWV	81.6	81.1	81.1	80.9
weight -Avg (SIF)	81.9	81.7	81.9	81.7
NTSG-1	82.6	82.5	81.9	81.2
TWE-1	81.5	81.2	80.6	80.6
Doc2Vec	75.4	74.9	74.3	74.3

Multi-Class Classification – 20NewsGroup (40-80 words)

Model	Accuracy (↑)	Precision (↑)	Recall (↑)	F1-Score (↑)
SCDV+BERT	86.9	86.4	86.1	86.3
(cxtd) + Anisotropy				
SCDV + word2vec	84.6	84.6	84.5	84.6
BERT (pr)	84.9	84.9	85.0	85.0

Performance of SCDV + BERT(cxtd) + Anisotropy better the baselines

- SCDV + word2vec
- BERT (pre-trained)

Show that both BERT base contextualization and SCDV are important

Dataset	BERT(pr)	SCDV + Word2Vec
Amazon	91.04	93.9
BBCSport	99.12	98.81
Twitter	66.63	74.2
Classic	95.63	96.9
Recipe-L	68.44	78.5
20NG	64.81	84.9

SCDV with word2vec embedding
performs better than
BERT(pr) pre-trained direct averaging.
→ except one dataset " <i>bbcsport</i> "

Dataset	BERT(pr)	SCDV + Word2Vec	SCDV + BERT(weight-avg)	SCDV + BERT (weight-avg)
Amazon	91.04	93.9	94.62	performs almost similar to SCDV + Word2Vec
BBCSport	99.12	98.81	97.29	\rightarrow
Twitter	66.63	74.2	72.98	Simply Replacing Word2Vec
Classic	95.63	96.9	96.54	with BERT gives no advantage
Recipe-L	68.44	78.5	78.13	, j
20NG	64.81	84.9	84.9	except on <i>"Amazon" datset</i>

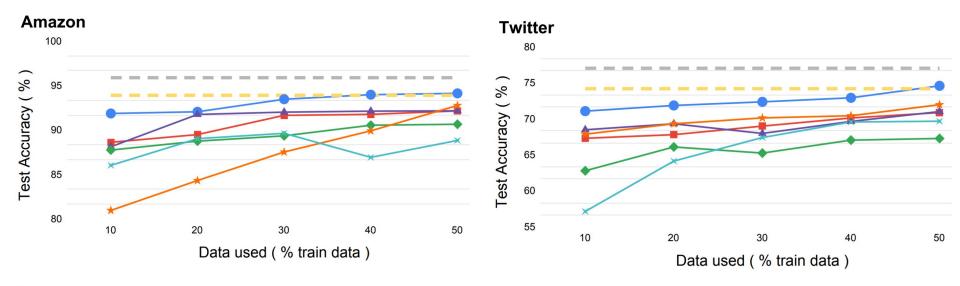
Dataset	BERT(pr)	SCDV + Word2Vec	SCDV + BERT(weight-avg)	SCDV + BERT(ctxd)+ Anisotropy
Amazon	91.04	93.9	93.9 94.62	
BBCSport	99.12	98.81	97.29	99.60
Twitter	66.63	74.2	72.98	77.03
Classic	95.63	96.9	96.54	99.01
Recipe-L	68.44	78.5	78.13	80.74
20NG	64.81	84.9	84.9	86.94

SCDV + BERT (ctxd) + Anisotropy outperforms SCDV + Word2Vec \rightarrow Credits to BERT Contextualization (WSD) & Anisotropy adjustment.

Dataset	BERT(pr)	SCDV + Word2Vec	SCDV + BERT(weight-avg)	SCDV + BERT(ctxd)+ Anisotropy	BERT (finetune)
Amazon	91.04	93.9	94.62	94.62 95.88	
BBCSport	99.12	98.81	97.29	99.60	99.67
Twitter	66.63	74.2	72.98	77.03	73.13
Classic	95.63	96.9	96.54	99.01	98.67
Recipe-L	68.44	78.5	78.13	80.74	81.13
20NG	64.81	84.9	84.9	86.94	86.91

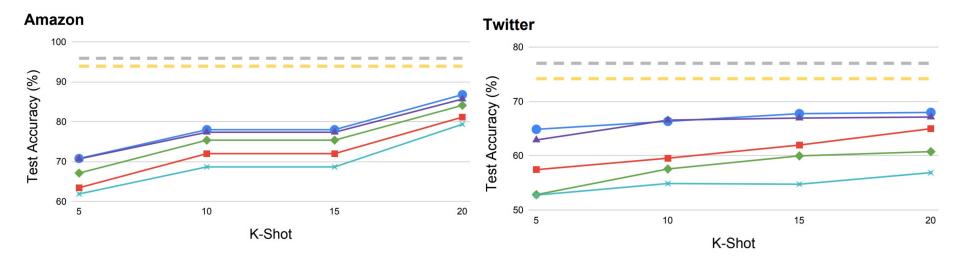
SCDV + BERT (ctxd) + Anisotropy performs very similar / also sometime outperforms the BERT (finetune)

Embedding performance on Low Resource Setting



SCDV+BERT(ctxd) + Anisotropy SCDV+word2vec SCDV+BERT(weight-avg) BERT(pr) BERT (finetune)
word2vec (idf-weight) = SCDV+BERT(ctxd) + Anisotropy (with 100% data) - SCDV+word2vec (with 100% data)

Embedding performance on Few-Shot Setting



SCDV+BERT(ctxd) + Anisotropy
SCDV+word2vec A SCDV+BERT(weight-avg)
BERT(pr) * BERT (finetune)
word2vec (idf-weight) = SCDV+BERT(ctxd) + Anisotropy (with 100% data) = SCDV+word2vec (with 100% data)

SCDV + BERT (ctxd) + Anisotropy **outperform** BERT(fine-tune) and other models All model improve performance with increasing K (#examples)

Semantic Textual Similarity (27 Datasets)

STS12	STS13	STS14	STS15	STS16
MSRpar	headline	deft forum	answers-forums	headlines
MSRvid	OnWN	deft news	answers-students	plagiarism
SMT-eur	FNWN	headline	belief	posteditng
OnWN	SMT	images	headline	answer-answer
SMT-news		OnWN	images	question-question
		tweet news		

Results (Pearson r X 100) on Semantic Textual Similarity

Model → Dataset ↓	PP -Proj	RNN	WME +PSL	Infer Sent	GRAN	Glove +WR	/BERT (pr)	SCDV +w2v	SCDV + BERT (ctxd) + Anisotropy
STS12	60.0	58.4	62.8	61	62.5	56.2	53	59.5	66.8
STS13	56.8	56.7	56.3	56	63.4	56.6	67	61.8	64.1
STS14	71.3	70.9	68.0	68	75.9	68.5	62	73.5	77.3
STS15	74.8	75.6	64.2	71	77.7	71.7	73	76.3	78.0
STS16	-	64.9	-	77	-	72.4	67	72.5	74.6
Average	65.72	65.3	62.83	66.66	69.87	63.08	64.4	71.0	72.22

Concept Matching

The task is to establish link (<->) the concept with the relevant projects.

Concept Matching Dataset: **537 pairs (projects, concepts)**, **53 unique concepts** (NGSS) and **230 unique projects** from Science Buddies

Embedding	Accuracy	F1	SCDV + BERT
TF-IDF	53.8	70.0	(ctxd) +
InferSent	54.0	70.1	Anisotropy
BERT(pr)	54.8	70.6	Outperform
SCDV + Word2Vec	53.7	70.0	SCDV +
SCDV + BERT(ctxd)	57.1	73.8	Word2Vec, BERT
SCDV + BERT(ctxd) + Anisotropy	58.9	74.6	(pre-trained)

Takeaways

✓ Using contextual representations such as **BERT** for word sense disambiguation can lead to better document representations.

✓ SCDV's use of **partition-based averaging** rather than straight word vector averaging has a **significant influence** on document representation.

✓ Anisotropic approach for isotropic reduction are beneficial for getting better document representation, and hence the corresponding downstream task.

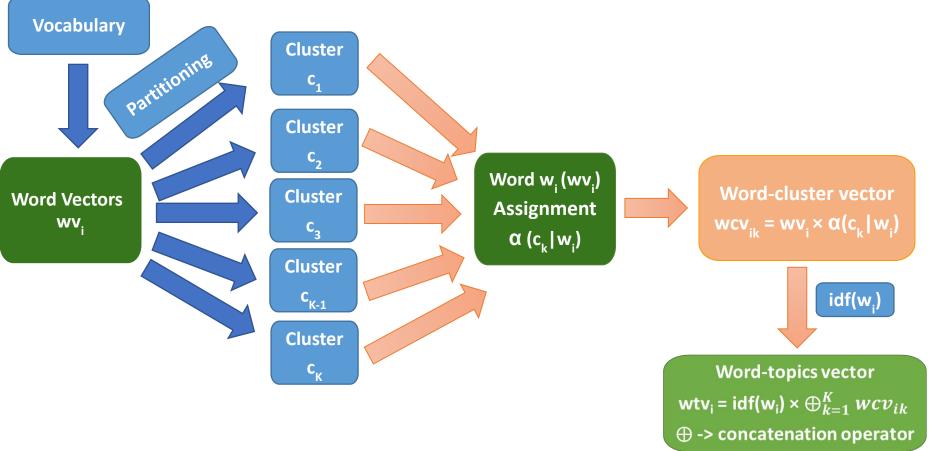
✓ Fine tuning of contextual representation such as BERT not beneficial for low-resource setting with fewer labeled data.

> Paper : https://arxiv.org/pdf/2109.10509.pdf Source : https://github.com/vgupta123/contextualize_scdv

References

- ConWea: Dheeraj Mekala, Jingbo Shang, "Contextualized Weak Supervision for Text Classification", In Proc ACL 2020
- **PSIF**: Vivek Gupta, Ankit Saw, Pegah Nokhiz, Praneeth Netrapalli, Piyush Rai, Partha Talukdar, "*P-SIF: Document Embeddings using Partition Averaging*", In Proc AAAI 2020
- **BoWV** : Vivek Gupta and Harish Karnick et al, "*Product Classification in e-Commerce using Distributional Semantics*", In Proc COLING 2016
- **SCDV** : Dheeraj Mekala*, Vivek Gupta*, Bhargavi Paranjape and Harish Karnick, *"Sparse Composite Document Vectors using Soft Clustering over Distributional Semantics"*, In Proc EMNLP 2017
- SCDV-MS : Vivek Gupta et. al. "Word Polysemy Aware Document Vector Estimation", In Proc ECAI 2020.
- NTSG : Pengfei Liu and Xipeng Qiu et al., "Learning Context-Sensitive Word Embedding's with Neural Tensor Skip-Gram Model", In Proc IJCAI 2015
- TWE : Yang Liu and Zhiyuan Liu et al, "Topical Word Embeddings" In Proc AAAI, 2015
- WMD : Matt J. Kusner et al., "From Word Embeddings To Document Distance", In ICML 2015
- SIF : Sanjeev Arora and Yingyu Liang "A Simple but tough-to-beat baseline for sentence embedding's", In ICLR 2017
- **Polysemy** : Sanjeev Arora and Yuanzhi Li et al. "Linear algebraic structure of word senses, with applications to polysemy", In TACL 2018
- Doc2vec : Quoc V Le and Tomas Mikolov. "Distributed Representations of Sentences and Documents" In: ICML 2014

SCDV: Pre-computation of Word-topics Vector



SCDV: Final Document Representation

